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Preface: On doing good things with data
Everyone who wants to do good things with data should have the intellectual support to do so; in turn, 
they must proceed with rigor and stand behind their work. This is my credo—my fundamental, animating 
belief in a culture for doing good things with data in public health.

This essay presents views that I have developed throughout my career, especially during my 8-year 
tenure as the Associate Director for Data Science in CDC’s Center for Surveillance, Epidemiology, and 
Laboratory Services from January 2015 through CSELS’s dissolution in January 2023. I wrote this essay 
to bring together as a coherent whole several related ideas on how CDC should think about, talk about, 
and support a work culture oriented to doing good things with data. In my view, this is CDC’s single 
greatest area for gains from doing good things with data: connecting technical excellence and analytic 
rigor to doing science better, getting better at learning things about the world, and getting better at 
doing things with what has been learned. In my experience, CDC has tended to overemphasize 
technology and underemphasize critical reflection and practical wisdom in doing things with data.

Following an introduction, the next 4 sections expand on why we should care about doing good things 
with data, what data science is and is not, how to construct and support a culture for doing good things 
with data, and who plays various roles and carries out the functions of a culture for doing good things 
with data. In the penultimate section, I add my personal history with data science. Then I extend my 
discussion on machine learning and artificial intelligence as a salient, contemporary set of issues for doing 
good things with data. Finally, I cap this essay with an aspirational manifesto for creating and fostering a 
progressive culture for data in public health.

This essay is a snapshot in time. It reaches back to extensive reading and study that I undertook from 
2014 through 2016, but it stops around 2021. The field continues to change rapidly. But as much as data 
science is about keeping up with fast-moving methods, tools, and technology, the schema for data 
science is itself stable. So, for example, where I describe how CDC should think about machine learning 
and artificial intelligence, I don’t specifically address recent large language (“chat”) models.
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I dedicate this essay to the dozens of folks whom I have mentored since I joined CDC as a federal 
employee in February 2000. I believe in you. You’re the reason that I wholeheartedly believe that a 
progressive culture for data centers on learners—because learners believe.

Addendum 2025: As a snapshot in time, this essay precedes not only the rapid ascent of large language 
models (“AI”), but also substantive changes to CDC’s organizational structure. First came “Moving 
Forward” as a reaction to and purported correction because of experiences in the Covid response, and 
then came the massive, unlawful organizational changes ushered in by the 47th presidential adminis-
tration in early 2025. I have opted to preserve the verb tenses and to ask you, the reader, to view this 
snapshot as aspirational more than prescriptive. When we are able to restore public service and 
recognize and esteem both learning from data and data-savvy public servants, this essay and the 
manifesto that goes with it will continue to apply in principle even if some details shift or evolve.

1 Introduction: Why, what, how, and who
Data science acts on the belief that if you approach data in just the right way, you can discover and 
unlock its meanings. As data become more varied and complex, data science helps in removing impedi-
ments to data’s meanings so that no data are off limits, no data have to go unlearned. Sometimes I 
approach data gently, as a data-whisperer intent on codiscovering with the data its own potential to 
reveal things about the world and to inform action in the world. Sometimes I wade in gingerly; 
sometimes I dive in; and sometimes I catch and ride the waves as the story within the data comes to the 
surface. 

It’s easy to be skeptical of the concept of data science, especially when it seems like it means many 
things but not much of anything. “Data science is what data scientists do,” wrote Davenport and Patil 
(2012). Does the phrase convey anything substantive? Does it offer anything new compared, say, to the 
data-oriented fields of statistics and informatics? Let’s open with the why, what, how, and who of data 
science and then unpack these themes.

Why: Foremost, data science is about learning from data. Its purpose is broadly to bring 
together, in a rigorous way, all that goes into doing good things with data. Data science 
promotes principled use of the full breadth of methods, from the familiar to the unfamiliar, along 
with the norms to ensure that methods and results stand up to scrutiny. Data science helps us 
to keep up with evolving methods, tools, and technology for learning from data of all structures, 
sizes, shapes, and speeds in a way that other disciplines do not. Dynamic and complex 
technologies and data motivate but do not define data science. 

What: Data science studies how to learn from data—especially complex or nontraditional data. 
It combines analytic, computational, and subject-matter methods to connect the whole life cycle 
of data: Frame what you want to figure out. Obtain and prepare data to engage the question. 
Preserve and share what was learned, how it was learned, and how that learning fits in with 
what is already known and with other choices that could have been made.

How: At the individual level, data science calls for technical and nontechnical skills. At the 
collective level, it calls for a forward-looking but grounded culture that supports putting those 
skills to use for doing good things with data. Technical skills cover analytic methods, such as 
statistics, machine learning, or causal inference, and computational methods, such as data 
wrangling and implementing and scaling algorithms. Nontechnical skills support good science 
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generally and good data science specifically, such as the ability to approach a problem with 
curiosity, attentiveness, perseverance, open-mindedness, and creativity.

Who: Everyone who wants to do good things with data should get to make the effort, as long as 
they are rigorous and accountable. A rich culture for data science includes expert and 
nonexpert doers, learners, mentors, supporters, and advocates, organized to operate and keep 
up with fast-moving methods, tools, and technology for doing good things with data effectively 
and sustainably.

I unpack these 4 circumstances—the why, what, how, and who—in the next 4 sections.

2 Why
The purpose of data science is broadly to bring together, in a rigorous way, all that goes into doing good 
things with data—for learning from data and for building things with data to put those learnings to use, 
for example, in safeguarding public health. CDC consumes a lot of data to support its public health 
mission. Traditional sources include surveillance, vital records, surveys, program evaluation, studies of 
health services, and clinical trials. More recent sources include billing and claims data, electronic health 
records, social media, and sensor data. From small, structured data to high-volume, unstructured data, 
over time the scope and scale of those data expand and become more complex. 

Why should we focus on data science? Because we need to keep up with rapidly changing methods, 
tools, and technology for extracting meaning from data.

Data science makes available tools for classic problems, such as working with data through the life cycle 
from problem formulation to collection to data management, through analysis, interpretation, and 
presentation. Contemporary issues in data science arise from movements to be open and to expand the 
scale of data and sophistication of analytic methods. Making data available for wide audiences, while 
ensuring adequate protections of individual privacy. Describing practices to make analyses reproducible, 
or at least traceable. Working with high-volume data, such as genomics, and high-velocity, real-time data, 
as found in syndromic surveillance and claims data feeds. And making sense out of unstructured text, 
images, and other nontraditional data types. Most contemporary problems differ from classic problems 
in scale rather than kind. For example, whether administrative data come from paper-based registers in 
resource-constrained settings or from massive stores of insurance claims data, they pose the same 
problems for inferring causes. Data science promotes principled use of the full breadth of methods, from 
the familiar to the unfamiliar, along with the norms to ensure that methods and results stand up to 
scrutiny. Data science crosses disciplines.

There’s another reason to focus on data science: Data science affords a measure of autonomy for 
practicing and honing data skills, because of ready access to open methods, tools, and technology. Some 
technical skills require special equipment (like growth media or microscopes in a microbiology 
laboratory) or access to humans (like clinical medicine or behavioral counseling). In contrast, to learn 
about data and from data, it is often enough to have data in hand, widely available software, and the 
persistence to jump into a problem and break it open. Software is now often freely available, with 
growing contributions by the very active R and Python user communities. So data science can be 
practiced with a great deal of self-determination. With that autonomy comes the latitude to own and 
direct one’s learning. Thus, the enterprising scientist can capitalize on that autonomy in order to keep 
up with fast-moving methods, tools, and technology, in part by continuing to learn how to learn from 
data. This autonomy presents a paradox that we will try to resolve later (in section 5.4.2): Data science 
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is necessarily interdisciplinary, and not every practitioner needs to cross all the disciplines. So how can 
one be autonomous and team-oriented at the same time?

In summary, we focus on data science because we want to learn from data, learn about data, and learn 
with data.

Learning from data: Data have value because data help us learn things about the world. What we learn 
helps us to make informed choices about how we interact with the world, for example, through public 
health interventions.

Learning about data: Data come in many structures, sizes, shapes, and speeds, from small, flat data 
tables to massive, unstructured data streams. Data conform to a variety of standards, or no standards at 
all. The varied characteristics of data both enrich and constrain the ways that data reveal characteristics 
of the world.

Learning with data through its full life cycle: Analytic knowledge and skills allow us to pose rich 
questions about the world, amenable to rich methods; guide how we generate, transmit, obtain, and 
prepare data; probe data to answer questions about the world; place answers from data in context, 
mindful of assumptions and alternatives; present data-driven answers to audiences clearly and correctly; 
and preserve those answers and ensure that the entire life cycle is transparent, accessible, traceable and, 
to the extent possible, reproducible.

The field of data science addresses a wide variety of problems (what), and the practice of data science 
straddles autonomous and collaborative styles (how). Thus, we also focus on data science so that we 
can build and sustain a culture (who) for doing good things with data, for continuously learning things 
about the world, and for empowering choices informed by those learnings, and for being ever ready to 
learn from and act on data.

3 What

3.1 What data science is
We have no shortage of definitions of “data science”, because different definitions serve different 
purposes. I will start with a tautological description that almost amounts to an operational definition.

3.1.1 Data science is what data scientists do
Writing in 2012 for the Harvard Business Review, Tom Davenport and DJ Patil (the US Chief Data 
Scientist during the Obama Administration) wrote the following:

[W]hat data scientists do is make discoveries while swimming in data. … At ease in the digital 
realm, they are able to bring structure to large quantities of formless data and make analysis 
possible. They identify rich data sources, join them with other, potentially incomplete data 
sources, and clean the resulting set. [D]ata scientists help decision makers shift from ad hoc 
analysis to an ongoing conversation with data. Data scientists realize that they face technical 
limitations, but they don’t allow that to bog down their search for novel solutions. [T]he 
dominant trait among data scientists is an intense curiosity—a desire to go beneath the surface 
of a problem, find the questions at its heart, and distill them into a very clear set of hypotheses 
that can be tested. (Davenport and Patil 2012)
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3.1.2 Learning from data
For pith, we can turn to Donoho (2017): “Data science [is] the science of learning from data, with all 
that this entails,” to which he adds, “it studies the methods involved in the analysis and processing of 
data and proposes technology to improve methods in an evidence-based manner.”

For plainness, we can turn to my working definition: “a set of core activities to ask good scientific 
questions and to line up the tools to answer them rigorously using data.” I developed that formulation in 
2016, drawing on The Art of Data Science (Peng and Matsui 2015). My operating definition of data science 
links rather than separates the tasks of stating and solving problems, mediated through data. Peng and 
Matsui enumerated 5 core activities, to which I add a sixth. I explicitly link each of these 6 core activities 
to analysis, since data analysis is a central commitment of data science, as I explain further below.

Pose good questions. The set of potential questions is enriched through awareness of the kinds 
of learning that various analytic methods support.

Prepare data to address those questions. With the purposes of analysis in mind, the practi-
tioner can obtain, manage, and explore data to ensure the data’s fitness to address the analytic 
purposes.

Probe the data. Conduct rigorous analysis to address questions, which includes developing and 
critically assessing one or more analytic models. The value of analysis itself comes from the 
ability to answer the question and to convey what is learned from data.

Place analytic results in context. Interpretation binds the question to the method, binds the 
method to the result, and puts them all into the context of assumptions about the data, 
technical assumptions in the analytic models, existing domain knowledge, and alternative analytic 
approaches that could have been considered. Understanding what specific data can’t tell you, or 
what phenomena those data rule out, is as valuable as interpreting what the data show.

Present methods and results. Communication shares what has been learned from data and 
how it was learned, and it also subjects the life cycle to scrutiny and transparency.

Preserve the entire life cycle. Ensure that the life cycle is traceable, accessible, reproducible, 
and enduring to the extent possible. In addition to communicating methods and results, trans-
parency ensures that the data and analytic code are as available as possible, subject to privileges 
of access where necessary. This transparency in turn supports fundamental scientific norms.

Peng and Matsui took care to explain that their core activities do not need to, and often do not, occur 
in sequence. Rather, with the execution of each core activity, careful reflection could lead the practi-
tioner to repeat, jump back, or jump forward. I expand on this idea later in this section.

Blei and Smyth (2017) wrote, “Although each of [statistical, computational, and human perspectives] is a 
critical component of data science, we argue that the effective combination of all three components is 
the essence of what data science is about. ... The practice of data science is not just a single step of 
analyzing a dataset. Rather, it cycles between data preprocessing, exploration, selection, transformation, 
analysis, interpretation, and communication. One of the main priorities for data science is to develop the 
tools and methods that facilitate this cycle.” 

The Data Science Association focuses on meaning: Data science is “the scientific study of the creation, 
validation and transformation of data to create meaning”, and a data scientist is “a professional who uses 
scientific methods to liberate and create meaning from raw data.” (Data Science Association)

https://www.datascienceassn.org/code-of-conduct.html
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The National Institutes of Health Strategic Plan for Data Science defined it as “the interdisciplinary field of 
inquiry in which quantitative and analytical approaches, processes, and systems are developed and used 
to extract knowledge and insights from increasingly large and/or complex sets of data.” (National Insti-
tutes of Health 2018)

The National Academies of Sciences, Engineering, and Medicine described data science along with its 
relationship to other fields, its primary tasks, and its primary purposes:

[Data science centers on] multidisciplinary and interdisciplinary approaches to extracting knowledge 
or insights from data for use in a broad range of applications. It is the field of science that relies on 
processes and systems (mathematical, computational, and social) to derive information or insights 
from data. It is about synthesizing the most relevant parts of the foundational disciplines to solve 
particular classes of problems or applications while also creating novel techniques to address the 
‘cracks’ between those disciplines where no approaches may yet exist … because the volume and 
variety of data available are expanding swiftly, data are more available immediately, and decisions 
based on data are increasingly automated and in real time. (National Academies of Sciences, 
Engineering, and Medicine 2018)

Finally, the National Institute of Standards and Technology (NIST) in 2015 defined data science as the 
“extraction of actionable knowledge directly from data through a process of discovery, or hypothesis 
formulation and hypothesis testing.” Per NIST, a data scientist is “a practitioner with sufficient 
knowledge in the overlapping regimes of business needs, domain knowledge, analytical skills, and 
software and systems engineering to manage the end-to-end data processes in the data life cycle … The 
end-to-end role ensures that everything is performed correctly to explore the data, create and validate 
hypotheses.” (NIST Big Data Public Working Group 2015) The data life cycle is “a set of processes in an 
application that transform raw data into actionable knowledge”:

 Collection: Gather and store raw data.
 Preparation: Convert raw data into cleansed, organized information.
 Analysis: Synthesize knowledge from organized information.
 Action: Use synthesized knowledge to generate value for the enterprise.

NIST’s definitions appear in the context of discussing “big data” that cannot be accommodated by tradi-
tional architectures. Data volume (size), variety (sources, domains, and types), velocity (rate of flow), 
and variability (changing characteristics) “drive the shift to … architectures for data-intensive applica-
tions.” (NIST Big Data Public Working Group 2015) I prefer plain-language versions of these concepts:

Table 1. Attributes of “big data”

Attribute V S
Number of data elements Volume Size
Multiple repositories, domains, or types Variety Scope, Sources
Rate of flow (records per unit time) Velocity Speed
Richness, complexity Variability Shape, Structure

These varied definitions of data science explicitly invoke learning, answering questions, creating meaning, 
and extracting knowledge—epistemic tasks that take us into the nature, sources, structure, and limits of 
empirically derived knowledge. Learning defines data science, which in turn centers data science on the 
role of analysis. These definitions vary in whether and how they appeal to processes (such as a data life 
cycle and adaptive problem-solving), means (complex data), and methods (quantitative and analytical 
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approaches and technology). These definitions also suggest but do not enumerate the skills that are 
needed to do data science. 

I agree with the NIH and NASEM definitions in that current and evolving complexity drive a need for 
adapted methods. As data and technologies become more complex, the drive for adaptively learning 
from data also intensifies. The risk I see is that we might overinvest in narrow (but potentially useful) 
skills while giving short shrift to broadly applicable but underserved skills: We should respect the funda-
mentals and avoid an unfortunate tendency to overemphasize the exotic or the complex at the expense 
of those fundamentals. Indeed, Donoho (2017) makes a similar case. We cannot lose sight of the need 
for learning from conventional or familiar data, using conventional or familiar methods. In addition to 
basic skills for managing and analyzing data, we need always to esteem skills for critical reflection and 
reasoning in creative but disciplined ways. In this sense, complexity and sophistication motivate data 
science, but they do not define data science, and it is a mistake to overidentify data science with those 
drivers. It would also be a mistake to focus on the technology rather than the science: Learning from 
data is a scientific act, enabled by evolving methods and tools. The value of learning from data needs to 
be judged by scientific rather than technological norms. Have we posed questions of social value and 
scientific validity? (See also Freedman 1987.) Have we prepared the data to answer those questions? 
Have we adequately probed the data and placed findings in context? Are proposed conclusions traceable 
and defensible? Is the reasoning coherent? We will return to this point when we talk about how data 
science is done.

3.1.3 Core activities and critical reflection
As mentioned above, Peng and Matsui’s schema for the core activities of the art of data science goes 
deeper than merely listing those activities: Each core activity calls for critical reflection, in which the 
practitioner reviews each core activity by framing, checking, and possibly revising or revisiting that 
activity. 

First, set your expectations for the core activity. Then collect information and compare your expecta-
tions to your information. If they don’t match, then take another look and either revise your 
expectations or your information. Maybe repeat the current core activity or return to a previous one. If 
they do match, then you’re in a good place, but you should occasionally check again for good measure, 
lest you fall into a confirmation bias trap. 

In a real sense, critical reflection puts the science in data science. We can associate each core activity 
with example prompts for critical reflection.

Pose good questions. Is the question of interest? Valid and valuable? Consult with experts or 
the literature. If needed, revise the question.

Prepare data to address those questions. Are the data suited to the question? Examine data 
early and often to learn about structure, content, and suitability. If needed, refine the question 
or obtain more or different data.

Probe the data. Does the analytic model answer the question? Does it use data correctly and 
take a suitable form for explaining or predicting a phenomenon of interest? Challenge model 
assumptions and structure. If needed, revise model structure or inputs.

Place analytic results in context. Does the analysis provide a meaningful answer that holds up 
to scrutiny and contributes to domain knowledge? Assess the totality of analyses—effect sizes, 
accuracy or bias, variability or uncertainty—in consideration of varying assumptions about the 
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data, the model, and the subject-matter context for the question. If needed, revise the analysis 
to provide a specific, meaningful answer or conduct diagnostics or sensitivity analyses to assess 
limitations and assumptions.

Present methods and results. Are the methods and results understood, complete, and 
meaningful to the audience? Assess content, style, and attitude and gauge audience feedback. If 
needed, revise the presentation to suit audience needs.

Preserve the entire life cycle. Are the data and analysis as open and transparent as possible? 
Assess whether data and analytic code can be made available with or without alteration or 
access controls, for example, through public repositories or under user agreements. If needed, 
work toward the least restrictive means for sharing.

These critical reflections show why the core activities need not occur in sequence. Indeed, some or all 
core activities could occur more than once for a given undertaking.

Table 2. Core activities, critical reflection, and iteration

Core activity Critical reflection

Set expectations Collect information Resolve mismatch

Pose: State a good 
question

Question is of interest, 
will advance public 
health

Consult experts, liter-
ature

Revise the question

Prepare: Obtain and 
explore data

Data are appropriate for 
the question

Examine data early, 
often to learn about the 
data and learn from the 
data

Refine the question or 
obtain other data

Probe: Build a formal 
model

Model answers question, 
to describe, explain, or 
predict

Challenge model 
assumptions and 
structure (e.g., sensitivity 
analysis)

Revise model structure 
or inputs

Place in context: 
Interpret results and 
implications

Analysis provides 
specific, meaningful 
answers

Totality of analyses—
effect sizes, accuracy, 
uncertainty

Revise analysis to 
provide a meaningful 
answer

Present: Communicate 
methods, results, signifi-
cance

Content, style, attitude 
meaningful to audience

Feedback from audience Revise presentation

Preserve and post: Make 
life cycle transparent, 
enduring

Data, code, and methods 
available

Assess sensitivities to 
release and possible 
restrictions

Make as open as 
possible; document 
restrictions

Core activities and critical reflections are adapted, in part, from Peng and Matsui (2015).
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3.1.4 Commitments: life cycle, centered on analysis, subject to norms
I have taken a broad view in surveying a variety of motivations and definitions for data science. In consid-
eration of this breadth and variety, I contend that data science entails 3 main commitments:

1. We learn from data in the context of an overall life cycle: posing rich questions about the 
world, amenable to rich methods; guiding how we generate, transmit, obtain, and prepare data; 
probing data to answer questions about the world; placing answers from data in context, 
mindful of assumptions and alternatives; presenting data-driven answers to audiences clearly and 
correctly; and preserving those answers and ensure that the entire life cycle is transparent, 
accessible, traceable and, to the extent possible, reproducible.

2. Analysis centrally connects the life cycle of data. We pose questions, prepare data, place 
results in context, and present answers informed by the variety of available analytic approaches. 
If we have methods for analyzing images, then we can ask questions that only images can answer. 
To interpret and communicate a risk or a rate of change seen in a set of data, we infer meaning 
from the analytic method. As further discussed below, we have many analytic modes available to 
us beyond traditional statistical methods, such as causal inference and machine learning.

3. We judge data science approaches and claims by scientific norms. Since data science is 
about extracting knowledge through analyzing data, then it should be judged by the same criteria 
that apply to extracting knowledge from observations. This commitment is familiar within statis-
tical practice; it needs to become familiar with other data-analytic modes, including machine 
learning.

These 3 commitments unpack what it means to learn from data, and they set some boundaries around 
that practice. They point to the practitioner’s responsibility for respecting context, respecting analytic 
intent, and respecting quality and rigor. They also point us in the direction of needed investments in 
resources and learning. These commitments are not, however, meant to imply that each person who 
practices data science individually carries out each activity. (See also section 5.3.) Let’s examine those 
boundaries and some disciplines that are related to, but distinct from, data science.

3.2 What data science is not
Data science overlaps other disciplines and scientific practices. Furthermore, as the National Academies 
of Sciences, Engineering, and Medicine (2018) notes, the practice of data science necessarily crosses 
disciplines. How does data science relate to statistics and other modes of data analysis, to informatics, 
and to science in general? How should the practice of data science privilege science over technology and 
focus on meaning and rigor?

3.2.1 Data science is not statistics
Statistics is not the same as data science, though the field substantially overlaps with data science. 
Moreover, data science is not merely statistics dressed up with appealing marketing. I argue above that 
data science takes responsibility for the whole life cycle of data, connected centrally through analytic 
concerns. In this understanding, a statistician who limits their engagement solely to analysis and perhaps 
interpretation is not doing data science. A statistician who does analysis and engages the rest of the life 
cycle of data is doing data science—as is an epidemiologist, a sociologist, a microbiologist, or anyone 
else.
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Donoho (2017) and Jones (2018) show that data science took shape as a discipline, in part, in reaction 
to the failure of academic statistics to focus sufficiently on pragmatic rather than theoretical concerns. 
This characterization cuts in 2 directions: While academic statistics might have shunned practical 
concerns, academic and applied statistics firmly root themselves in traditions of rigor and other scientific 
norms. On the other hand, machine learning and other analytic disciplines are not as firmly rooted. To 
be fair, academic machine learning—often located in computer science or information science depart-
ments—pays heed to rigorous mathematics, out-of-sample generalizability, and applied issues such as 
bias and fairness. But the traditions are not as deep, and the norms are not as strong.

Leo Breiman, the late UC Berkeley statistics faculty member and an early bridge-builder between statis-
tical and machine-learning communities, said that he might advise a young person (in 2001), “Don’t go 
into statistics.” In the end, he would say, “Take statistics, but remember that the great adventure of 
statistics is in gathering and using data to solve interesting and important real world problems.” (Olshen 
2001)

Andrew Gelman, Columbia faculty member and prolific blogger, wrote in 2013, “Statistics is the least 
important part of data science … Statistics is important—don’t get me wrong … But it’s not the most 
important part of data science, or even close.” (Gelman 2013)

3.2.2 Data science is not data analysis (not even machine learning)
The field of statistics connects disciplines and practices for constructing and probing models grounded in 
probability theory and inference. This characterization holds for frequentist, Bayesian, and other 
approaches, whether the probability model is highly specified (as with parametric models) or loosely 
specified (as with nonparametric models). Many other approaches to data analysis might have a proba-
bility component that is not of primary concern or might have no formal probability component at all.

Machine learning has been described as the answer to the question, “How can computers learn to solve 
problems without being explicitly programmed?” In practice, computers “learn” to solve problems by 
looking for mathematically representable patterns in data (such as clusters or topic models) or by 
constructing mathematical tools to guess an output, given a set of inputs, modeled on examples that 
associate known inputs with known outputs. In these senses, machine learning is data analysis. As a field 
and collection of methods, machine learning overlaps substantially with statistics, distinguished by its 
emphasis on finding patterns and making predictions rather than constructing models that directly 
represent data—even when a machine learning model is explicitly probability-based or a model’s perfor-
mance is represented using concepts from probability.

There is no bright line between statistics and machine learning, and many methods inhere to both disci-
plines. For example, classical statistics has traditions of cluster analysis, dimensionality reduction, and 
regularization, and machine learning uses Bayes’s theorem and logistic regression for binary classification 
tasks. Although machine learning is often associated with complex models based on vast amounts of 
data, statistical models can be complex, with many model parameters, or they can be based on large 
amounts of data. Conversely, machine learning models can be simple or based on small data. Since 
machine learning models tend to emphasize predictive performance (outputs given inputs) rather than 
internal model structure, however, the largest data-analytic models in practice tend to use machine 
learning methods. Some deep learning models have billions, or possibly trillions, of model parameters. I 
discuss machine learning, along with artificial intelligence, at greater length below in section 8.

Other modes of data analysis beyond statistics include causal inference, geospatial methods, econo-
metric methods, and compartmental and agent-based modeling. Pearl (2009) explicitly characterizes 
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causal inference as extrastatistical; without additional strong assumptions, no probability model can 
inherently represent causality. Structural equation models and inverse probability weighting can help to 
disentangle a causal signal from random noise, subject to those extrastatistical assumptions. Geospatial 
and econometric methods also often use probability components, for example, to accommodate corre-
lations in space or time, but they wed those components to other concepts. Compartmental and agent-
based modeling might or might not use empirical observations, but when they do, any probability 
components for solving or simulating systems also extend beyond strictly probability-based models.

From the perspective of data science, the life cycle of data can center on any or all of these analytic 
disciplines, not just statistics. This perspective covers 2 of my 3 commitments of data science: the life 
cycle and the central concern of data analysis. The third commitment, to scientific norms and rigor, 
obtains when the practitioner acknowledges and respects the norms inherent to the various modes of 
analysis. For machine learning, for example, these norms include out-of-sample generalizability and 
model robustness and stability. Thus, not only is it wrong to characterize data science as an enhanced 
form of statistics, such a characterization risks failing to hold other analytic modes to similar expecta-
tions of rigor and norms.

Much more could be written about whether machine learning or other modes of analysis reveal 
“meaning” in data, as some data science definitions seek to do. For now, I note that all such modes, 
including statistics, can be subjected to various methods for interpretation in terms of model structure 
and the relationship of models to input data. Furthermore, such interpretations and accompanying expla-
nations warrant careful critical evaluation in view of a broad swath of scientific norms, not least because 
an apparent interpretation or explanation can itself be an illusion regardless of the method of analysis.

3.2.3 Data science is not informatics
Public health informatics is the systematic application of information and computer science and 
technology to public health practice, research, and learning. Informatics applies technology to obtain, 
store, and use information. Per Savel and Foldy (2012), it concerns “the how and why of technology and 
systems versus the common what and where of information technology … the integration and proper 
application of technology and systems to get data rather than just the technology and systems” (emphasis 
added) … “frequently the application of standards and structure that help with meaning before data 
science gets to it.” My colleague Brian Lee has said (personal communication), “Informatics is all the 
work of understanding and making data available to determine meaning.” Thus, we can see that infor-
matics and data science overlap, especially regarding data wrangling, movement, accessibility, and scale, 
but the fields take different orientations: Data science seeks meaning from data, empowered by infor-
matics to work with data. The disciplines in each field are important, and one can practice the collection 
of disciplines across those fields. One ought not, however, conflate them nor to treat one field as a 
subset of the other.

3.2.4 Data science is not just good science
Much of scientific practice in public health uses, or purports to use, data that come from observations 
about individual health status and other aspects of the world. When public health science uses data, then 
it should conform to scientific norms and rigor, much as I have claimed data science should. Does it 
follow, then, that data science is just good science? The answer is no, both because data science inherits 
some commitments that do not apply broadly to the practice of science and because good science 
entails commitments that do not apply to data science.
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By “good science” I mean, in brief, all those practices for building and organizing knowledge about the 
world through the methods and values of experiment and observation, neutrality, rigor, transparency, 
empiricism, reproducibility, minimizing subjective bias, and so on. 

On the expectation that theoretical science need not use data at all, we can omit theoretical science and 
narrow our question to applied science. Even narrowed in this way, we can conclude that not all applied 
science uses data. While all applied science depends on observation and precedent, those contexts need 
not entail data in the sense of observations represented in a way that we can subject them to further 
analysis. For example, without implicating data, a scientist can classify an organism through observation 
or conduct a qualitative review of published literature to structure arguments and conclusions about the 
state of knowledge in a specified domain. Next, not all applied science that uses data, uses it well. While 
we could argue that applied science that uses data poorly is not “good science”, we should also 
acknowledge that applied science can consist of good and bad components in which the poor use of data 
does not undermine the entire project. Finally, and pivotally, not all applied science that uses data well 
also takes responsibility for the integrity of the life cycle of data and for connecting that data life cycle to 
how questions are posed, data obtained, analysis performed, results placed in context, methods and 
results presented, and the whole process preserved. Just as a statistician can conduct a rigorous data 
analysis without connecting that analysis to the life cycle of data, any other scientist can engage in 
portions of the scientific method, including portions of the life cycle of data, without having applied data 
science. Data science entails taking responsibility for the integrity of the life cycle of data—across the 
core activities of data science—in a way that does not apply to the full breadth of “good science”. 
Without question, doing data science well overlaps with doing good science, but it is important not to 
conflate them.

The life cycle of data is consistent with, but not synonymous with, the scientific method. This distinction 
between “good science” and data science matters because the distinction informs how we do data 
science, which in turn differs in emphasis and kind from how we do good science. In particular, many 
technical and nontechnical skills that support the practice of data science, especially the skills for locating 
data analysis as a central focus in the life cycle of data, do not generalize or scale to the wholesale 
conduct of good science.

4 How

4.1 Foster a progressive culture
If we think of data as an asset, how does that asset produce value within the public health mission and its 
available resources? How can public health scientists who care about data keep up with fast-moving 
methods, tools, and technology for learning from data? A progressive culture intentionally orients itself 
proactively and not only reactively, toward advancement and not just tradition. While a progressive 
culture encourages innovation, more importantly this community continually expands the set of tools 
for doing good things with data and applies judgment for selecting among familiar or conventional 
options as well as unfamiliar or unconventional options. A progressive culture for data remains rooted 
in history, continues to learn from old data in new ways, anticipates the future, and handles evolving 
demands to keep up with fast-moving methods, tools, and technology.

Here I sketch a vision for fostering the practice of data science across disciplines and levels of 
experience by describing 3 components of a progressive culture for data:
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1. developing know-how through data-savvy technical skills to bridge domain knowledge and 
methods for learning from data, 

2. cultivating data-wise nontechnical skills to drive problem-solving with data (start inquiry, keep 
it on track, and deal with obstacles), and

3. participating in an empowering community of mentors and peers to enable self-learning and 
foster practical wisdom.

After describing technical and nontechnical skills, I map those skills to an expanded treatment of Peng 
and Matsui’s core activities of data science. Then I sketch functions and roles in an empowering 
community. In the next section, on who does data science, I more fully articulate those functions and 
roles along with the level of technical and nontechnical skill needed for each.

4.2 Foster technical skills
What skills are required to practice data science rigorously? What about those who want or need to 
practice data science well but who don’t need to be expert data scientists? The core activities of data 
science call for knowing how to pose a good question, how to compile and prepare the data to answer 
the question, and how to extract, interpret, and convey meaning from the data in answer to the 
question. Data science skills are often represented (for example, NIST Big Data Public Working Group 
2015) as the cross-disciplinary intersection of 3 sets of technical skills that cover these core activities: 
domain-specific skills for posing a good question and interpreting and explaining results; computational 
skills for corralling, structuring, and applying algorithms to data; and data-analytic skills, including 
communication skills, for extracting, interpreting, and conveying meaning from data.

Domain-specific skills cover any subject about which one might want to use data to answer a question, 
including public health, epidemiology, medicine, microbiology, toxicology, and anthropology. In practice, 
different fields often call for different norms for rigor. Epidemiology establishes modes to reason about 
bias and causation. Medicine institutes norms for assessing preventive and therapeutic efficacy and effec-
tiveness. Microbiology and toxicology work out how to establish and measure the presence of a 
pathogen or toxin for ascertaining individual cases. 

Computational skills cover how to use theory, hardware, and software to represent and work with 
data of various structures, sizes, shapes, and speeds, to enable transmission and exchange of data and 
other information among systems and among users, to implement algorithms for working with and 
analyzing data, and to manage the efficiency of all of these undertakings. How should textual information, 
audiovisual information, and other types of information be represented for further computational access 
and use? Having obtained and stored various types of information, how should they be processed and 
arranged in preparation for analysis? How can algorithms for working with data make the best use of 
available computational resources, such as memory and processing time? How can algorithms be imple-
mented to work with increasing volumes, speed, and complexity of data while ensuring that 
computational results are available in an acceptable amount of time and other limitations? Computa-
tional skills cover or overlap programming, data-wrangling, software engineering, statistical computing, 
and methods for breaking up high-volume, high-velocity, or otherwise intensive data problems into 
smaller pieces, processing them, and reassembling the output.

Data-analytic skills, as discussed above, encompass statistical methods, machine learning, and other 
modes of data analysis. Statistical modeling typically refers to using probability to think about how data 
might have been generated and then using data to figure out how we might separate a representation of 
something about the world (signal) from variability or uncertainty about that representation (noise). 
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Statistical methods include simple summaries like means and medians and more complicated summaries 
like tables, regression models, and time-to-event models. Machine learning typically refers to asking 
whether we can find patterns within a set of data, like clusters of similar counties or patients or topics in 
a set of documents, or patterns that relate inputs to outputs based on examples, such as for predicting a 
patient’s disease status or prognosis from available insurance claims and billing information. Other data-
analytic approaches include causal, geospatial, and econometric methods. These methods often overlap, 
and they often incorporate but don’t always center on probability components.

I link communication skills primarily with data-analytic skills, because an analyst often has primary 
responsibility for interpreting, representing, and conveying methods and results. These skills include the 
ability to use verbal narrative, tables, and graphics to explore, develop, and tell a story that translates 
results into stories, decisions, and actions. 

While data science is often represented at the 3-way intersection of domain-specific, computational, and 
data-analytic skills, it is also instructive to review their pairwise overlap. The combination of domain-
specific and computational skills could encompass domain-specific software development, as with 
medical or laboratory applications. Domain-specific and data-analytic skills entail applied research, as in 
epidemiological applications. And computational and data-analytic skills overlap in statistical computing, 
machine learning, and other applications that implement mathematical algorithms and optimization.

We can roughly associate each core activity in data science with technical skill areas. 

Pose good questions. Domain knowledge is needed to state and refine a good question. An 
awareness and understanding of a broad and rich variety of data-analytic methods can also 
enhance the kinds of questions that one could pose.

Prepare data to address those questions. Domain knowledge informs what to measure or 
assess, and computational skills inform how to obtain, organize, store, transmit, extract, and 
transform data. Data-analytic skills support assessments of whether the data can answer the 
question.

Probe the data through rigorous analysis. Building a formal model depends primarily on data-
analytic skills, supported by strong computational skills for implementing the analysis, especially 
when working with complex data or methods.

Place analytic results in context. Interpreting models depends on the data-analytic skills to 
construct them and to critique model-related assumptions, as well as domain knowledge to 
place the results in context of what is already known or perceived about the domain subject. 

Present methods and results. Communication draws on data-analytic skills for correctly 
describing methods and formal results, as well as domain knowledge for correctly describing and 
relating to subject-matter.

Preserve the entire life cycle. Predominantly, computational skills support procedures for 
openness and traceability, including preparation of data and code for restricted or unrestricted 
sharing.

Of course, it is very likely that every core activity will draw on all 3 types of technical skills.
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4.3 Foster nontechnical skills
To practice data science well and to keep up with constant change, it is not enough to focus on technical 
skills and knowledge. Technical skills cover the know-how for answering good scientific questions rigor-
ously using data, but technical skills have limits and can become obsolete as methods, tools, and 
technology advance. 

Nontechnical skills (sometimes called “soft skills”) are personality traits, goals, motivations, and prefer-
ences that are valued in an applied domain. For example, collaboration and communication call for 
interpersonal skills. In addition, many sources (such as Davenport and Patil 2012) emphasize that those 
who practice data science should be passionate, curious problem-solvers. Here I pay special attention to 
traits that support, and even empower, learning from data through its life cycle, centered on analysis and 
subject to scientific norms. In other words, I describe and unpack the traits that flow from a love of 
knowledge and learning, followed by traits that support the ethical conduct of data science.

4.3.1 Intellectual character
In a progressive culture for data, fostering intellectual character can cultivate responsible learners and 
inquirers who are better able to keep up with fast-moving methods, tools, and technology. Intellectual 
virtues flow from a love of knowledge and learning, aiming at “cognitive goods”, like truth and under-
standing (King 2014; see also Costa and Kallick 2008). In data science, the practitioner seeks 
understanding mediated through data and the life cycle of data. Intellectual virtues animate scientific 
practice in general and data science in particular. This subsection draws heavily on the work of Jason 
Baehr, especially Baehr (2013a), Baehr (2013b), and Baehr (2015).

Baehr (2015) describes 3 dimensions of an intellectual virtue: First, an ability or skill specific to a virtue 
and leading to action. For the trait of curiosity, this skill is asking good questions. Second, the 
motivation or commitment to apply the virtue. With curiosity, the motivation is to ask good questions 
because of a love of knowledge or learning. Third, the judgment or sensitivity to know when and how 
to exercise virtuous abilities or skills. With curiosity, the sensitivity concerns when to start, continue, 
pause, or stop inquiry. In addition, each virtue can be seen as the mean between vices—too little of a 
good thing and too much of a good thing. Too little curiosity is the vice of indifference, while too much 
curiosity is the vice of obsession or fixation.

We can identify several intellectual virtues by examining the dispositions associated with stages of 
inquiry when approaching an objective: starting to learn and heading in the right direction, keeping the 
inquiry on track, and dealing with obstacles. For each stage of inquiry described below, I list stage-
related virtues and use the pipe character (“|”) to delimit each virtue’s corresponding ability or skill, 
motivation or commitment, judgment or sensitivity, and vices representing too much or too little of the 
virtue.

Start learning and head in the right direction. A few intellectual virtues relate to how to start 
learning or start an inquiry and ensure that it heads in the right direction: In addition to curiosity, intel-
lectual autonomy is the ability to think for oneself, and intellectual humility is the ability to admit one’s 
limitations—to know what you don’t know.

Curiosity: Ask good questions | to learn | discerning when to start, continue, pause, or stop the 
inquiry | mediating between indifference and fixation.
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Intellectual autonomy: Think for oneself | to achieve independent thought or self-assuredness | 
discerning when to yield to others or differentiate from others | mediating between conformity 
and radicalism.

Intellectual humility: Admit one’s limitations | to recognize what one is able or unable to do or 
to locate oneself in the context of others’ interests | discerning when to assert oneself or to 
stand back | mediating between arrogance and self-deprecation.

Keep the learning process on track. After starting an inquiry, a few intellectual virtues assist the 
learner in keeping on track: Attentiveness is the ability to engage, to look and listen, and to notice 
details. Carefulness is the ability to spot and avoid errors. Thoroughness is the ability to go deep in 
order to gain understanding and to explain.

Intellectual attentiveness: Look and listen | to remain alert to details | discerning when to tune 
out or to focus more intently | mediating between distractedness and preoccupation.

Intellectual carefulness: Avoid errors | to assure or control the quality of one’s output | 
discerning when to ease up or to double down on quality control | mediating between 
sloppiness and perfectionism.

Intellectual thoroughness: Go deep to understand | to ensure sufficiently complete coverage 
or treatment | discerning when to fill gaps or let well enough alone | mediating between superfi-
ciality and meticulousness.

Deal with obstacles. Even on track to learning, one is likely to encounter obstacles. A learner benefits 
from intellectual virtues that help work through or around obstacles: Open-mindedness helps to think 
outside the box when confronted with a challenge to solve. Courage helps to be bold and to take intel-
lectual risks. Flexibility helps to adapt as needed. Tenacity or perseverance helps to embrace struggle 
while working through a challenge.

Open-mindedness: Think outside the box | to consider new or unfamiliar ideas and seek 
diversity and inclusion | discerning which ideas to dismiss or to entertain an idea | mediating 
between narrow-mindedness and gullibility.

Intellectual courage: Take intellectual risks | to allow for bold action despite potential for 
failure | discerning when to tolerate more or less potential for failure | mediating between 
cowardice and foolhardiness.

Intellectual flexibility: Adapt as needed | to allow for change, especially for improving 
outcomes | discerning when and how much to stand firm or alter activity | mediating between 
intransigence and suggestibility.

Intellectual tenacity: Carry on | to continue toward learning objective, even when challenged | 
discerning when to persist and when to stop trying | mediating between fickleness and 
stubbornness.

Intellectual virtues can conflict with each other. For example, courage can conflict with humility when 
the drive to take an intellectual risk runs counter to the limitations of one’s abilities (when one’s reach 
exceeds one’s grasp). To navigate these conflicts, the good learner or thinker is aided by the mediating 
virtue of practical wisdom. This trait allows the inquirer (phronimos, per Baehr 2013a) to grasp which 
intellectual activity is most valuable for attaining one’s goals. Recall that Baehr (2015) identifies one 
dimension of an intellectual virtue as judgment or sensitivity about when and when not to exercise that 
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virtue. Practical wisdom undergirds this dimension, and it allows the good learner or thinker to take 
suitable action when intellectual virtues conflict. (See Turri et al. 2021 and Baehr 2013a.)

Even if, as a good learner or thinker, you are motivated to apply intellectual virtues, you still need to 
develop the abilities and judgment that connect your motivation to right action. Intellectual virtues are 
developed by practicing them and by critical reflection on your own actions and dispositions. You get 
better at courage by practicing courage—by taking intellectual risks and learning from the consequences. 
You get better at humility by practicing humility—by owning your limitations and not shying away from 
them. You also develop or cultivate practical wisdom—to avoid vice and to mediate conflicting virtues—
through practice and guidance and seeing them modeled by others. Curricula and other resources, 
including literature, computing resources, and mentors, can help intentionally and systematically cultivate 
intellectual virtues. I return to these ideas in the section on learning data science in community.

Just as we associated each core activity with technical skills, we can also associate the critical reflection 
process with nontechnical skills. Setting expectations corresponds to starting learning and heading in the 
right direction, which calls for curiosity, autonomy, and humility. Collecting information and comparing 
expectations with that information corresponds to keeping the learning process on track: attentiveness, 
carefulness, and thoroughness. And dealing with matched or mismatched expectations and information 
corresponds to dealing with obstacles: open-mindedness, courage, flexibility, and tenacity.

Table 3. Intellectual virtues, by stage of inquiry

What: skill Why: drive How: practical wisdom

Virtue, by 
stage

Skill or activity Motivation or 
commitment

Judgment or sensitivity Mediating between too 
little and too much

Start learning

Curiosity Ask good 
questions

learn about the world when to start, 
continue, pause, or 
stop the inquiry

indifference /
fixation

Intellectual 
autonomy

Think for 
oneself

achieve independent 
thought or self-
assuredness

when to yield to others 
or differentiate from 
others

conformity /
radicalism

Intellectual 
humility

Admit one’s 
limitations

recognize what one is 
able or unable to do

when to assert oneself 
or to stand back

arrogance /
self-deprecation

Keep learning on track

Intellectual 
attentiveness

Look and 
listen

remain alert to details when to tune out or to 
focus more intently

distractedness /
preoccupation

Intellectual 
carefulness

Avoid errors assure or control the 
quality of one’s output

when to ease up or to 
double down on quality 
control

sloppiness /
perfectionism

Intellectual 
thoroughness

Go deep to 
understand

ensure sufficient 
coverage or treatment

when to fill gaps or let 
well enough alone

superficiality /
meticulousness
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Deal with obstacles

Open-
mindedness

Think outside 
the box

consider new or 
unfamiliar ideas

which ideas to dismiss 
or to entertain an idea

narrow-mindedness /
gullibility

Intellectual 
courage

Take intel-
lectual risks

allow for bold action 
despite potential for 
failure

how much potential for 
failure to tolerate

cowardice /
foolhardiness

Intellectual 
tenacity

Carry on continue toward 
objective, even when 
challenged

when to persist and 
when to stop trying

fickleness /
stubbornness

4.3.2 Ethics and values
Where intellectual virtues connect a love of knowledge and learning to the practice of asking and 
answering questions, ethics and values promote behaviors to achieve other goods, including trust, 
equity, and fairness. 

We seek to protect personal privacy, and to balance privacy and utility, with specific behaviors 
throughout the life cycle of data: posing questions that do not raise undue risk to respondents; 
obtaining, using, communicating about, and sharing data in ways to limit risks to privacy and confiden-
tiality; interpreting and communicating findings in ways that respect other rights and the welfare of the 
subjects of analysis; and promoting openness, transparency, and other aspects of data utility to make the 
overall process, methods, and final products available for scrutiny.

Further considerations concerning ethics and values in the practice of data science stem from the 
conduct of research involving human subjects, the conduct of public health surveillance, scientific 
integrity, and public service. Many of these considerations pertain to data, data systems and informatics, 
and data analysis. They go beyond privacy and confidentiality to justifications for gathering information; 
for balancing benefits and harms, burden and utility, access and security; self-determination and 
substantive engagement; justice; duties to limit collections and to use what is collected; and responsi-
bility to avoid fabricating, falsifying, and plagiarizing. These duties are covered extensively elsewhere and 
are often implemented through regulation, policy, checklists, and other forms of guidance. (See, for 
example, CDC's Office of Public Health Ethics and Regulations and Privacy Program.)

In a progressive culture for data, we value data because data help us to learn things about the world and 
to make informed choices about how we interact with the world. We value innovation and technology 
insofar as they help us to continue expanding the means for doing good things with data, but we do not 
seek innovation or technology as ends in themselves. An extensive set of tools gives us the broadest 
options for doing good things, so we remain open both to the unfamiliar or unconventional and the 
familiar or conventional. Based on these values, we practice pragmatic, principled pluralism by exploring 
and using wisely and well all methods that can help achieve technical excellence to learn from, about, 
and with data. Principled pluralism allows honest disagreement about methods, results, and interpre-
tation.

https://www.cdc.gov/privacy/about/
https://www.cdc.gov/os/offices/public-health-ethics-regulations.html
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4.4 Foster community and leadership
Community and leadership form the essence of culture in a progressive culture for data—so essential 
that I defer the full discussion to the next section (5). In this section, I sketch how community and 
leadership enable the practice of data science along the following dimensions:

Learning. Community supports learning about data, and learning how to do data science, by 
centering on learners. Learning can follow formal curricula and be encouraged in structured 
programs, but substantial portions of learning occur in informal settings. Learners benefit from 
interactions with peers and mentors. Mentors benefit from meta-mentors. Advocates influence, 
guide, and support the learning-oriented community.

Doing. Community supports the practice and profession of data science by giving everyone who 
wants to do good things with data the resources to do so. Data science learner-practitioners 
with basic or intermediate data skills come from any discipline to do good things with data. 
Expert practitioners go deep on data science methods and guide practitioners to proceed with 
rigor and stand behind their work. Managers supervise practitioners and experts, to ensure that 
they have the resources and direction that they need to achieve good things with data. Lay 
advocates, as persons literate in the value of data, work in community with practitioners, 
experts, and managers and help ensure supportive resources to enable the practice of data 
science.

Staffing. Community creates and ensures the capacity for data science through staffing and 
career development by all available means to recruit, retain, organize, and develop learners, 
doers, and supporters. This includes identifying and building on the data science potential among 
existing staff, finding and using mechanisms to bring on learners as well as other federal and 
nonfederal staff, and organizing formal and informal structures for staff to learn, do, manage, and 
support data science effectively.

Leading. In a progressive culture for data, leadership aims toward and flows from practical 
wisdom. Leadership is part of the practice of data science, and not separate from it. Leaders 
include practitioners, experts, managers, and laypersons, regardless of their career stage, job 
title or series, credential, or location in the hierarchy (subject to some structural constraints in 
the federal system).

Within and across these dimensions, an individual can carry out more than one role or function. For 
example, in the doing dimension, a practitioner can serve as both an expert and a manager. The same 
person can also serve as meta-mentor and advocate in the learning dimension. In the next section, I 
expand on the roles and functions that align with these dimensions.

5 Who

5.1 Who gets to do data science?
Everyone who wants to do good things with data should have the intellectual support to do so; in turn, 
they must proceed with rigor and stand behind their work. I first formulated this credo in 2016. I asked, 
“Who gets to do data science?” to express both empowerment (who has the ability) and privilege (who 
has the authority). I was proclaiming that one need not be an expert in statistics or computer science to 
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perform well when working with data. Indeed, nonstatisticians can, and often do, perform great work 
with data.

I believe this credo because of my own experience mentoring, coaching, and advising learners through a 
variety of CDC or CDC-adjacent programs, including fellowship and student internship programs, with 
undergraduates, masters and doctoral students, and postgraduate learners. For the first few years in my 
CSELS ADDS role, I emphasized the learning-oriented, empowering component of data science: 
“everyone who wants to do good things with data”. In my mentoring experience, a learner’s specific 
analytic or technical background has been a poor predictor of how well they would do, especially in 
programs that don’t recruit specifically for previous analytic or technical education. For example, I have 
worked with several physicians who had no specific statistics background, who went on to execute 
superb analyses, some even winning awards. In each case, they proceeded with rigor and stood behind 
their work. My role was merely as mentor; they took up the challenges of doing data science. 
Conversely, some learners with apparent analytic background either shunned rigorous analysis or 
fumbled badly. CDC programs can select for prior technical or analytic experience, but I don’t believe 
that CDC programs need to do so.

Who gets to do data science? I can restate the question echoing my credo as follows: Who wants to do 
good things with data, proceed with rigor, and stand behind their work? I can restate the question again, 
echoing my working definition of data science: Who will line up tools to ask and answer good questions 
rigorously using data? I have the same answer for all 3 versions of the question. Self-learning problem-
solvers get to do data science: people who connect a love of knowledge to self-learning and solving 
problems, people who ask thoughtful questions, pay close attention to details, honestly acknowledge 
what they don’t know, probe for deeper meaning, and persist in the face of obstacles. (See also Baehr 
2013b.)

In 2016, I felt energized to tout such an empowering message focused on learning rather than specific 
disciplines. I slowly realized that this message was incomplete. While I situated self-learning problem-
solvers in learning-oriented communities with mentors and advocates, I needed to say more about who 
learners, mentors, and advocates are, where specific technical and nontechnical skills fit in, and how that 
community operates beyond learning. So from mid-2016 through mid-2019, my primary formulation 
transmuted from Who gets to do data science to the more expansive and inclusive Who participates in a 
progressive culture for data. I began acknowledging that nonexperts who do good things with data often 
need guidance from experts to empower those achievements. Furthermore, nonexperts and experts 
alike need support and other resources from other members of the progressive culture for data.

I also believe that CDC has a substantial, untapped well of potential among existing staff for doing good, 
and better, things with data. In other words, CDC could achieve, or make great strides toward, a 
progressive culture for data with the right attention and direction regarding learning, doing, staffing, and 
leading. I have not seen CDC as a whole make those moves, though pockets here and there show 
promise.

Who gets to do data science? Echoing NIST, the Office of Personnel Management (Reinhold 2019) says, 
“Practitioners with sufficient knowledge in the areas of business needs, domain knowledge, analytical 
skills, and software and systems engineering to manage the end-to-end data processes in the data life 
cycle. Overlapping skills including data analysis, analytical applications, big data engineering, algorithms, 
domain expertise, statistics and machine learning. [They] use expertise in one or more of these domains 
to solve complex data problems.” This answer lacks poetry but specifies a few details in terms of 
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knowledge, skills, and work activities. These details are useful for creating staffing strategies, occupa-
tional qualifications, and position descriptions.

Finally, who leads in a progressive culture for data? Everyone should get to.

5.2 Learning in a progressive culture for data
In 2018, I added the following to my growing collection of personal mottos: “Less training, more 
learning.” By this I meant that our culture should explicitly recognize and support personal initiative and 
self-direction as ways—in my view the most important ways—of gaining knowledge and experience for 
solving real problems, especially after entering the workforce. Community supports learning about data, 
and learning how to do data science, by centering on learners. Learning can follow formal curricula and 
be encouraged in structured programs, but substantial portions of learning occur in informal settings, as 
through reading, self-guided learning, and interaction with peers. In my experience, a culture that 
overemphasizes training risks undervaluing the full gamut of the ways that learners learn. 

A focus on learning respects the agency and responsibility of the learner, who must take an active role 
not only in receiving instruction but in practicing and honing what is learned. A focus on learning further 
opens the way for various models and modes of learning, including self-teaching through reading, crafty 
on-line searching, independent tutorials, and experimentation. Self-guided and experiential learners need 
guidance from others, mentoring, and help identifying or filtering through material that can assist in 
learning. Learning concerns not only individual development but also better serving the shared mission, 
for example, by asking better questions, working better with data sources or structures, and communi-
cating rigorously and clearly to a variety of audiences. Learning should not focus only on technical skills 
but also on the means to exercise data acumen, good sense, and judgment. 

Beyond developing skills among current staff, we need an agency culture that provides intellectual 
support to everyone who wants to do good things with data, whether they already have the skills or 
not. For those who already have skills, it’s a matter of supporting good practice, supporting continuing 
development, and encouraging that they support others. For those who lack skills, it’s a matter of 
providing support that is more oriented to learning new skills or to adapting skills from other areas. 

5.2.1 Relational learning
I start here with the relationship between learners—typically fellows, students, or early-career scientists
—and mentors, since this relationship formed the initial impetus for my entire conception of a 
progressive culture for data.

Mentors create supportive conditions to guide other scientists to learn about data and to learn from 
data. A mentor is responsible for guiding technical skills to encourage a personalized direction for self-
learning, sometimes as specific as skills for managing relational databases, creating graphics that smooth 
binary outcomes, modeling seasonality, or exploring categorical data using mosaic plots. 

In my experience, experience has been more important for learning than specific subject-matter 
knowledge. I typically guide the learner through clear thinking and critical reflection more than through 
particular methods. Mentors model intellectual virtues. They show by example as they openly practice 
curiosity, courage, humility. Mentors create regular opportunities for the learner to practice intellectual 
virtues by stimulating curiosity, rewarding courage, and fostering humility. In some ways, these nontech-
nical skills are more fundamental to scientific practice than technical skills are: learning how to learn and, 
more than that, how to exercise judgment regarding level of effort, intensity of exploration, extent of 
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experimentation, making interesting mistakes. Practical wisdom matures in part through guidance and in 
part through reflecting on one’s own lapses in intellectual virtue. A mentor can help the learner with 
both.

In the context of education, Baehr (2013b) explained that educating for intellectual character growth is 
personal, because it involves thinking of learners as persons whose basic beliefs, attitudes, and feelings 
about knowledge and learning also matter critically to the quality of their education; it is necessarily 
social or relational, because personal change and growth occur most readily in the context of trusting 
and caring relationships; and, it is reflective, because it involves reflecting on and discussing with 
learners the value of thinking and learning, regularly pausing to identify or reflect on the significance of 
what is being learned. The mentoring relationship responds to and nurtures a love of and interest in 
thinking, learning, answering good questions. “Intellectual virtues flow, not from a desire for praise or 
approval, but out of a genuine interest in thinking and learning.” (Baehr 2015)

As a mentor, I often explain my thought process to the learner, as messy and nonsensical as that 
thought process might be. Thinking out loud with a learner, usually when I have no idea whether I’m 
making sense, is real and honest. It is also an exercise in vulnerability. In turn, the mentor must earn the 
trust and respect of the learner, so that the learner is able to take risks to make interesting mistakes in 
their own thought processes.

CDC needs to find and support mentors in informal and formal ways. In the discussion below on staffing 
and capacity for data science, I propose some approaches through articulating competencies and 
accounting for performance.

In a robust culture supported by mentoring, the mentoring relationships go in several directions. I 
started this discussion focusing on the relationship of the mentor to the learner. In communities of 
peers, learners can mentor each other in the same personal, relational, and reflective ways as mentors 
do with learners. In addition, mentors could benefit from guidance and wisdom from experienced 
mentors, or what I call “meta-mentoring”. Finally, advocates influence, guide, and support the learning-
oriented community.

Learners ask questions, solve problems, reflect critically on process, and improve their skills. They take 
responsibility for self-learning, seek mentorship, and practice technical skills and intellectual virtues. 
Learners take risks and make interesting mistakes, from which they learn how to exercise judgment. 
Learners use data responsibily to improve the world. Learners participate in community through fellow-
ships and other learning programs, communities of practice, scientific workgroups, interest groups, and 
user groups. The Statistical and Machine Learning Community of Practice was a community for learning 
from data, an example grass-roots network of learners that brought together members of scientific 
workgroups, user groups, and other groups.

Advocates influence the practice and profession of data science, promote and reward commitments to 
data and to self-learning, remove needless barriers, support instructive failures and interesting mistakes, 
encourage those who practice data science, and uphold those who profess data science. Advocates 
include managers, decision-makers, associate directors, directors, and others.

5.2.2 Formal curricula and structured programs
A progressive culture for data can promote more systematic or standardized learning through formal 
curricula for technical skills and for nontechnical skills. Numerous vendors now offer courses on a wide 
variety of computational and data-analytic skills. CDC makes many of these available through OCIO, 
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CDC University, programs like Advanced Molecular Detection, and sessions organized by CDC 
workgroups and user groups. In addition to the endless options for courses on technical skills, curricula 
are also available for nontechnical skills (e.g., Educating for Intellectual Virtues), though they are not as 
readily available.

CDC has a rich, long, and successful history of structured, experiential learning programs, including 
some for professionals outside of CDC. Until recently, these programs have not intentionally and 
explicitly addressed data science. The Epidemic Intelligence Service (EIS) program has addressed analytic 
skills in limited ways. Informatics and prevention effectiveness programs have specific, narrow technical 
areas of focus. Participants in these programs regularly benefit from communities of mentors and peers, 
but those have also not purposefully addressed data science. 

Some recent developments demonstrate incremental shifts: The EIS program has piloted and continues 
to provide mentoring to EIS fellows for advanced analytic projects. The fellowship programs have also 
piloted efforts to create teams of fellows from different programs for intentionally interdisciplinary 
work. Recent modernization initiatives have sponsored a few fellows to focus on data science. The Data 
Science Upskilling (DSU) program launched in 2019 with about a dozen teams of incumbent federal staff 
and fellows, each focusing on a primary project, on-demand, online courses, and cross-team activities on 
5 components of data science: statistics, machine learning, computing, visualization, and ethics.

DSU allows federal staff and other learners to set aside time to go deep on data and on methods that 
are new or unfamiliar to them, as well as time for trial and error. The program is predicated on explicit 
organizational support, including from supervisors, as well as structured leadership and access to 
experts, learning resources, technical tools, and fellow learners. Participants refine existing skills or learn 
new skills in analytic methods, software such as R, Python, and Power BI—importantly, not limited by 
their prior or primary occupational series or disciplines. They generally learn how to establish clearer 
boundaries on their motivating data science projects, develop workable (if preliminary) solutions, and 
establish a community of practice. Most of the methods and tools used in DSU are not new, though they 
might be unfamiliar or uncommon within CDC’s general culture. The program brings both an overar-
ching purpose and specific value to learners and their programs by focusing on specific, mission-oriented 
problems. They thus establish, expand, and apply methods, tools, and technology available for CDC to 
use rigorously. Furthermore, they enrich their own and their teams’ ability to adapt to fast-changing 
contexts: newer questions, less familiar data sources, and less familiar methods and technology, all of 
which comes close to my vision for the motivation and disposition of a progressive culture for data.

5.3 Doing in a progressive culture for data
A progressive culture for data centers on learning in order to empower the practice and profession of 
data science. Community supports the practice and profession of data science by ensuring that everyone 
who wants to do good things with data has the resources to do so. On this account, I see 4 primary 
roles in that culture: learner-practitioners (which I also call “learners and doers”), expert practitioners, 
managers, and lay advocates. These roles can change over time and overlap with each other and with 
the roles that I articulated above as learning-oriented roles (mentor, learner, and advocate). The roles 
capture the essential distinctions for the primary practical needs of that culture for doing good things 
with data.

Learner-practitioners with basic or intermediate data skills come from any discipline, not just 
computer science or statistics, to do good things with data, mindful of the full life cycle of data.

https://intellectualvirtues.org/
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Description seek to do good things with data
come from any discipline, not just computer science or statistics

Data-oriented skills basic or intermediate
literate in data fundamentals, such as the design of data collection methods, data 

quality assurance, conventional flat, tabular and multidimensional, relational data, 
and common analytic methods

interpret, communicate, and memorialize learning from data

Goals and approach achieve, or work toward, data proficiency, building on fundamentals to work rigor-
ously with more complex data or methods

learn continuously and show how modern tools and methods solve modern problems 
mindful of the full life cycle of data

Expert practitioners achieve data mastery and go deep on data science methods and provide the intel-
lectual foundation for good practice.

Description provide the intellectual foundation for doing good things with data, aiming for scien-
tific quality and analytic rigor

master complex data structures or methods

Data-oriented skills literate in advanced, contemporary methods for complex data structures or methods, 
such as high-volume or high-velocity data; analysis of patterns and predictions as 
well as inferences; visual and other methods

interpret, communicate, and memorialize learning from data

Goals and approach practice personal proficiency
ensure that everyone who wants to do good things with data, can
set norms for data-oriented practice and for learning from, about, and with data
enable, guide, correct, and empower practitioners to proceed with rigor and stand 

behind their work
mindful of the full life cycle of data

Managers supervise learner-practitioners and experts to ensure that they have the resources and 
direction that they need to achieve good things with data, now and in the future.

Description give learner-practitioners and experts resources and direction to do good things with 
data

Data-oriented skills data fluency, acumen, or proficiency
how to assess scientific quality and analytic rigor of data-oriented solutions
how to allocate investments in data-oriented learning and technology
how to allocate data-oriented assignments

Goals and approach foster and reward curiosity, invest in learning (not just training), encourage creativity 
and interesting mistakes

hold practitioners and experts to account for producing knowledge learned from, 
about, and with data

advocate for the means to enable practitioners and experts to continue increasing 
their capability, efficiency, and effectiveness

Lay advocates work in community with practitioners, experts, and managers as persons literate in the 
value of data to help learn things about the world.

Description support doing good things with data, in community with practitioners, experts, and 
managers

Data-oriented skills data fluency or acumen
how to assess basic quality of data-oriented solutions
how to allocate investments in data-oriented learning and technology



A culture for doing good things with data

26

Goals and approach help ensure supportive resources to enable learning and achievement

5.4 Staffing in a progressive culture for data
How does a progressive culture build and sustain the capacity to keep up with fast-moving methods, 
tools, and technology? How are people brought in, organized, and kept around?

Harvard Business Review headlined data scientist as “the sexiest job of the 21st Century” (Davenport and 
Patil 2012). Fast Company has called it one of the best 25 jobs in America (Dishman 2016).

5.4.1 Data science staff should be cultivated, hired, and outsourced
Amidst the mixture of excitement and marketing hype about data scientists, there’s a recurring question 
about whether data scientists are recruited and hired from the outside or cultivated from the inside. 

Data scientists are hard to find and attract. … Data scientists are rare commodities. … What 
data scientists do—curate data, ask the right questions, build explanatory analytical models, 
implement the models into various applications—is simply not scaling at the pace of demand. 
(Millis, 2015)

A prominent data scientist in Silicon Valley ... doesn’t hire on the basis of statistical or analytical 
capabilities. … [He] seeks both a skill set—a solid foundation in math, statistics, probability, and 
computer science—and certain habits of mind. He wants people with a feel for business issues 
and empathy for customers. Then, he says, he builds on all that with on-the-job training and an 
occasional course in a particular technology. (Davenport and Patil, 2012)

I believe you indeed learn data science on the job. It is true that data scientists should know 
[some specific technical skills] … And self-learners can catch up quickly …. But focusing only on 
people who call themselves data scientists is a mistake. (Van Cauwenberge, 2015)

In these 3 quotations, we sense that data scientists are hard to come by. Furthermore, since they need 
to keep up with fast-moving methods, tools, and technology, they need a firm foundation in technical 
and nontechnical skills as well as a disposition and self-sufficiency for continuous learning.

Federal workforce flexibilities afford a rich variety of staffing mechanisms and organizational options for 
achieving and sustaining an effective mix: career development among federal staff and other learners, 
recruiting new federal staff and learners, adding collaborators from academia and other partners, and 
acquiring data science services through contracts. This section provides a brief, opinionated summary 
narrowly focused on a few considerations. I organize the discussion around 6 broad, mutually exclusive 
segments: 

1. Federal employees already on staff, including civil service and uniformed staff
2. To-be-recruited federal employees
3. Federal and nonfederal staff in learning programs, glossing over some nontrivial nuances distin-

guishing federal learners (e.g., some fellows hired under Title 42) from nonfederal learners (e.g., 
student interns)

4. Collaborators from academia or funded under a grant or cooperative agreement
5. Research and development contractors from federally funded research and development 

centers, university-affiliated research centers, and national laboratories
6. Commercial vendors
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For ease of presentation in this section, I will sidestep some details that cannot be ignored in practice. 
For example, by learning programs, I mean staffing mechanisms such as fellowships, not coursework or 
programs like Data Science Upskilling. In addition, I include academic collaborators under the Intergov-
ernmental Personnel Act or as Special Government Employees (SGEs) along with grantees, even though 
IPA funding is executed like a contract (acquisition) rather than a grant (assistance) and SGEs are techni-
cally civil federal employees.

Some of the material in this section corresponds to similar, more expansive discussions of the HHS 
Data Council’s Data-Oriented Workforce Subcommittee (Gehrke et al. 2021; Wagner 2022). The 
subcommittee’s reports present rich, thoughtful, comprehensive detail on staffing and organizing for data 
science in the federal workforce. While I provided some critical input to the subcommittee, the views 
that I present here are my own.

5.4.1.1 Federal employees

The federal government has been expanding options for classifying and developing federal employees to 
do data science. Historically, occupational series in science, technology, engineering, and mathematics 
(STEM) have represented narrow but workable disciplines, including engineering (0801), operations 
research (1515), mathematics (1520), statistics (1529 and 1530), computer science (1550), and to some 
extent information technology specialist (2210); some of these have been combined into interdisciplinary 
positions, such as health science and statistics (0601/1530). Other scientific or technical series in social 
and behavioral sciences (0101), microbiology (0400 group), and health sciences (0600 group) have been 
used for positions that focus on research or analysis. Around 2016, I wrote CDC’s first position 
description (in series 1530) that explicitly included machine learning. 

In 2018, the Office of Personnel Management issued direct-hiring authority for STEM positions in 
economics, biology, engineering, physical sciences, and math fields. Then in 2019, OPM released 
guidance for adding parenthetical “(Data Scientist)” titling to several of these series (Reinhold 2019). 
Managers in the National Center for Injury Prevention and Control developed a set of standard “(Data 
Scientist)” position descriptions in several series and grades.

In 2019, CDC hosted a sequence of Future of Work (FoW) workshops to develop data science profiles. 
I appreciated the focused attention, but I perceived that the approach did not provide much latitude for 
existing federal staff who are experts in data science to influence the shape and direction of the effort. 
Data-oriented experts already in the workforce would have the direct experience to inform what is 
needed for doing good things with data—like existing supports and motivators (such as interesting 
problems and supervisory support) as well as persistent challenges (like barriers to nimbly using no-cost 
data science software). FoW’s contract support staff could say something about the ways that industry 
improves its use of data, but they lacked awareness from within CDC’s own culture of working with 
data. I also perceived that the approach risked conflating informatics with data science rather than clari-
fying the distinctions between them. On the benefit side, FoW fleshed out the concept of data fluency as 
a minimum competency for much of the federal workforce. In my schema above for doing in a 
progressive culture, managers and laypersons would best support the culture by achieving at least data 
fluency.

Finally, in late 2021, OPM issued the new data science occupational series 1560. The accompanying 
flysheet substantially emphasizes the defining importance of the life cycle of data, but it covers job activ-
ities that are diffuse or ill-defined enough that it will take special care to use the series effectively. I 
would have preferred improving the way that federal agencies use existing series, including flexibility 
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with titling and combining series, but the development deserves to be taken seriously. Thus, CDC has 
worked to develop qualifications, competencies, position descriptions, and other resources for 
recruiting and hiring data scientists.

Based on my experience with learners, user groups, and other early-career professionals at CDC, I 
believe that unrecognized and untapped potential already exists among incumbent federal staff and that 
CDC has so far failed to see and characterize this potential. To realize this latent capacity, we need to 
shift our thinking from traditional assessments of existing skills and traditional emphasis on training, to 
assessments of aptitudes and habits of mind and a radically different take on on-the-job learning that 
rewards self-learning and nurturing networks with peers and mentors. At least as important, we should 
be finding out from employees and learners with these experiences or interests what they need and 
want in order to do good things with data, rather than a narrow top-down focus on what only managers 
perceive—especially managers unfamiliar with the motivations, commitments, and prospects of data 
science. It makes little sense to me to talk about recruitment and retention without examining what 
makes prospective or practicing data science practitioners want in order to join the workforce and stay 
in it.

Tapping this potential also calls for a culture shift among staff themselves who do or can do data science. 
While it can be important, for example, for a statistician to maintain the professional identity of their 
discipline, statisticians (and computer scientists and others) need to see themselves as part of, rather 
than separate from, intentional cross-disciplinary engagement.

Turning to hiring, CDC faces well known challenges competing with other sectors. Aware of limited 
flexibility to enhance incentives for prospective hires, what nonfinancial incentives can CDC offer? 
Foremost, CDC’s unique mission and public service already draws employees from many disciplines; 
that is, CDC appeals to many recruits’ personal values. Second, if CDC cultivates a truly progressive 
culture for data—one that rewards a drive to learn as well as a drive to contribute—then CDC 
becomes that much more attractive to exactly the kind of people who can sustain and enrich that 
progressive culture. But the culture must be genuine, or else its attractiveness will fade.

Stepping back from the fine details of series and grade, whether federal data science staff are cultivated 
from within or hired from outside, the most important operational considerations pertain to compe-
tencies and performance. CDC needs practitioners who are able to do data science, whether as part or 
as all of their duties. As a side benefit of CDC efforts to flesh out series 1560, human resources staff 
have worked to develop a richly varied set of competencies, work activities, and proficiencies. Those 
supportive resources can and should shape other series beyond the new 1560. A 1530 statistician could 
adopt the more expansive data-analytic competency or the enriched competency for machine learning 
and artificial intelligence. And those same human resource concepts can and should be adapted into 
performance elements and statements, so that everyone who does data science can be accountable and 
rewarded for doing so. In addition to competencies and performance elements that arise from series 
1560, CDC should also develop competencies for skills associated with intellectual virtues. Skills and 
competencies oriented to learning, practical judgment, and mentoring could also help to differentiate 
proficiency and grade within series and could (and should) apply to other scientific series.

5.4.1.2 Fellows and other learners

CDC manages or partners on dozens of structured learning programs on dozens of topics, open to 
persons with a variety of educational backgrounds. Fellows stimulate, and demonstrate CDC’s 
commitment to, a vital culture of learning. CDC sometimes hires fellows as federal staff, often as an 

https://www.cdc.gov/fellowships/index.html
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intentional career path. Although CDC fellows contribute to CDC’s product, their primary purpose is 
to learn, not to augment staff.

Some CDC fellows focus largely on doing good things with data. More fellows get to do good things 
with data, whether they focus on data or not.

I believe that CDC should commit to helping CDC programs develop data science capacity through a 
focus on fellows, with the follow-on intention that other members of a learner’s program unit can also 
develop their own data literacy or competency. Early drafts of the 2018 Public Health Data Strategy 
called for a ready response unit of data scientists who would work with CDC programs as needed. If 
such a unit were to be created, I recommended having it focus on working through fellows, such that 
the requesting CDC program would develop the capacity to address the data-oriented need rather than 
relying on outside staff to take care of it and move on. (As a side note, the Center for Forecasting and 
Outbreak Analytics largely goes the opposite direction from my recommendation, investing substantial 
data science resources in that center rather than distributing them among other CDC programs.)

All these fellows need support from peers and mentors. To that end, CDC should foster mentoring as a 
supported competency, with accountability and reward through performance appraisal and other incen-
tives. CDC should not, however, overinstitutionalize mentoring, because the role itself needs latitude 
and flexibility for fostering both technical and nontechnical skills.

5.4.1.3 Nonfederal collaborators

In addition to federal employees and learners, nonfederal collaborators serve some of CDC’s data 
science needs, through joint research or other projects with academic or public health partners, through 
research and development organizations, and through commercial vendors. CDC often engages with 
academic and public health collaborators through grants and cooperative agreements or through a so-
called mobility agreement under the Intergovernmental Personnel Act (which is administered more like 
a contract than a grant). Research and development organizations include federally funded research and 
development centers (FFRDCs, such as those operated by the MITRE Corporation or the RAND 
Corporation), university-affiliated research centers (UARCs, such as the Georgia Tech Research 
Institute and the Applied Physics Laboratory at Johns Hopkins University), and national laboratories 
(such as Oak Ridge National Laboratory and Sandia National Laboratories). Finally, commercial vendors 
include a vast collection of entities that bid to sell proprietary services to CDC under the Federal Acqui-
sition Regulation.

These outside contributors can especially help by filling in gaps in CDC’s own capacity for data science 
activities varying in discipline, skill, or scale that CDC can’t address on its own. It’s important for CDC, 
through advocates and managers, to strive toward building capacity among CDC’s federal staff and to 
avoid assuming that only outside collaborators can do a particular thing (such as some forms of text or 
image analysis). As I’ve argued elsewhere in this essay, CDC’s federal staff and learners likely have 
substantial, unrecognized capacity for extending CDC’s data science capabilities into unrealized direc-
tions. It would be a mistake to outsource based on a faulty assumption. 

Many needs do exceed CDC’s current capacity. When it is necessary to turn to nonfederal collabo-
rators, it becomes especially important to have enough expertise among CDC’s federal staff (or at a 
bare minimum among trusted nonfederal partners) to ensure that contributions from nonfederal collab-
orators meet the intended need. How do we know if we’re getting something useful, or what we need, 
from these collaborators? I have observed more than one project in which a nonfederal collaborator—
sometimes academic, sometimes commercial—supplied a deliverable that the home CDC program was 
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unable to evaluate. In those instances, greater data science expertise within the CDC program, or 
through another service or community within CDC, could have helped to ensure that the proposed 
deliverables would be worth the investment and that the actual deliverables met the need.

5.4.2 Data science staff should be organized to do data science

5.4.2.1 Organizing data science capacity

As described in previous sections, a progressive culture for data needs data science learner-practitioners 
(from a variety of disciplines), expert practitioners (specifically data science disciplines), managers, and 
lay advocates. A discussion that focuses only on experts is incomplete and short-sighted. Not everyone 
needs to be a data scientist to be empowered to do good or to be held to a high standard. And not 
everyone needs to be held to a high standard.

Should analysts or data scientists be integrated with staff from other disciplines or set apart? This 
question and the reality cut both ways: statisticians and other data staff are often set apart, and they 
often prefer it that way. In a post-Covid workplace configuration, the organizational question comes 
down to 2 main characteristics that we can think of as within and between: Should data staff be placed in 
units that are homogenous or mixed with collaborating staff of other disciplines? How connected should 
data staff be across distinct units? I’ve seen some version of each configuration. The idea of grouping 
data scientists together seems like a wise way to manage limited resources, but in my experience, it 
fosters the notion that data scientists ought to be separate. During CDC’s Futures Initiative in the early 
aughts, there was talk of putting all statisticians together in one center. It would have both made it 
harder to work with analysts and constrained the professional development of statisticians. I think that 
the most effective all-around configuration is to mix data scientists with other professionals so that 
there are other data scientists nearby and all data science practitioners in a division, say, regularly 
interact with each other to work through problems together and to learn.

5.4.2.2 Assessing data science capacity

CDC’s ability as an agency to do data science depends on all the cultural components that I have listed 
above: intentional cultivation of learners as well as constructive support and direction for data science 
practitioners and experts that not only respects but also appeals to their know-how and their drive—
both their technical skill and their nontechnical skills. An assessment of data science capacity needs to 
include, and go beyond, characterizing the aggregate set of those technical and nontechnical skills. It is 
important also to discern from people who do good things with data what they need and what they 
want in order both to continue and to improve. Let’s break those ideas down by focusing on people 
who do data science (practitioners and experts) and people who directly empower, enable, or support 
them (managers). In the federal system, we need to distinguish federal staff, (nonfederal) learners, and 
other nonfederal staff. Finally, we want to characterize individual data science competencies as well as 
unit-level competencies at increasing levels of aggregation, such as teams, branches (collections of 
teams), and so on.

For staff who do data science, we want to know their proficiency and aptitude with technical skills in 
data analysis and computation as they apply across the life cycle of data. In my experience, the most 
effective way to discern technical and nontechnical skills and aptitude is for experts to see the skills in 
action, either prospectively or retrospectively: How well can the practitioner frame a problem? Work 
out what kind of data address the problem? Arrange, explore, and analyze the data using suitable tools? 
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Correctly describe and critique the analysis? Demonstrate critical reflection throughout? Keep the 
activity directed toward the ultimate goal and deal with obstacles by acting on traits such as curiosity, 
attentiveness, perseverance, open-mindedness, and creativity? In addition to this broad set of compe-
tencies, we also want to know about particular strengths, for example, with programming in Python or 
deep learning or time series, as well as areas that warrant new learning in order to address intended 
data science tasks. No one staff person needs to master all the technical skills, but they should have 
sufficient acumen to discern where their skills apply and where they do not.

For staff who supervise data science practitioners or lead projects that apply data science, we need to 
assess and edify their data fluency, sufficient to guide and empower practitioners and experts. Data 
fluency includes the ability to understand the components of the life cycle of data, how those compo-
nents relate to each other, the skills that each core activity calls for, and the intellectual traits and 
practices that support critical reflection and adaptation throughout the life cycle. Managers could be, but 
do not need to be, data science practitioners or experts. Where a manager lacks expertise, they will 
need the humility and wisdom to turn to experts. Furthermore, managers should demonstrate the skills 
needed to foster both learning and mentoring.

Some staff enable data science but do not practice it or manage those who practice it, such as infor-
mation technologists or cloud engineers. For these staff, we also need to assess and edify their data 
fluency and their understanding of the life cycle of data, centered on analysis.

Data science is interdisciplinary. To ensure domain knowledge in addition to computational and data-
analytic skills, we need to account for the combined set of skills and knowledge as groups of staff roll up 
into teams and other aggregated units. And we need to consider additional nontechnical skills for collab-
oration and negotiation. When considering a collection of staff and their joint mission, what are the 
specific strengths, weaknesses, and gaps in their collective ability to prepare, conduct, and communicate 
analysis? Do they have special strength or notable weakness in areas that could affect their ability to 
meet their mission, such as detailed knowledge of longitudinal claims data or time series methods? 
Assessment of larger units could especially call for evaluative expertise from outside the unit, as practi-
tioners and managers might not be able to identify their own gaps.

A capacity assessment extends beyond individual and collective skills and traits, however. What do 
incumbent staff think that they need in order to do data science well and to keep doing it better? What 
do incumbent staff want in order to do data science well and to keep doing it better? Taking staff 
interests seriously can nurture morale and foster staff retention, but it also recognizes that staff are 
often the experts on supporting and bolstering their own capacity. Just as modernization should pay due 
heed to early-career professionals (the epitome of modern), and world-class analytics should pay due 
heed to data science practitioners and experts (the epitome of data-savvy), an assessment of data 
science capacity should pay due heed to the staff who actually do things with data. And yet these staff 
are often overlooked when they should be intentionally and directly engaged. Enlightened organizations 
often conduct exit interviews with departing staff, in part as an after-action analysis of the counter-
factual: Now that you’re leaving, under what conditions might you have stayed? In a progressive culture 
for data, practicing staff are continuously seen as partners, or even experts, in knowing how their unit 
can best function to keep up with fast-moving methods, tools, and technology. The culture, through 
supervisors and other governance, should continually engage with data-oriented practitioners proac-
tively throughout their tenure, to empower them, facilitate their ongoing achievement, assure forward-
looking resources, direct their efforts, and hold them to account.
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5.4.2.3 Shaping and developing data science capacity

Assessment lets us know where we are and a little bit about how prepared we are to move in the direc-
tions that we want to go. But how do we shape and develop that capacity to do good things with data? 
This section outlines a way to structure the mission and focus of data science practice using 3 organizing 
rubrics predicated on concepts presented earlier in this essay. Those rubrics then translate into 
organizing principles, which lead to specific practices.

The 3 rubrics encompass (1) the core activities of the practice of data science, (2) the prepositional 
calculus of learning through data, and (3) a primary but fluid commitment to specific topics and services 
within the unit’s mission.

Rubric 1: Core activities of the practice of data science. Data science intentionally connects 
all core data science activities across the life cycle of data, as explained above, together with 
critical reflection at each core activity.

Rubric 2: Modes of learning through data. We use data to learn about the world in at least 3 
ways:

1. Learn about data, to understand the kinds of questions they might be used to answer.

2. Learn from data, in support of answering questions put to the data.

3. Learn with data, by using data to develop, explore, or evaluate methods.

This prepositional calculus distinguishes assessing quality and utility from making inferences, 
which are in turn distinguished from a focus on methods themselves for learning about or from 
data. 

Rubric 3: Topical goods and services. The third rubric distinguishes the goods or services 
delivered as a result of engaging with the life cycle of data. Under this rubric, technical assistance 
to collaborating partners is an essential service, as are developing methods for ensuring data 
validity, evaluating case definitions, and collaborative analysis of population health.

We translate these 3 rubrics into organizing principles by linking them to data science activities.

Rubric 1  Principle 1→ . Link all data science activities to 1 or more of the core activities of the 
practice of data science, in the context and awareness of the other core activities. A team’s 
primary skills and products should be organized around performing these core activities, with 
explicit notice of the scientific or business question of interest, the source(s) and transformation 
of data, and so on.

Rubric 2  Principle 2→ . Link all data science activities to 1 or more of the learning preposi-
tions. Is the purpose of a given activity to understand the structure and attributes of some data 
source (learn about), to make claims about the world such as trends in asthma (learn from), or 
to get better at carrying out one or both of those purposes (learn with)?

Rubric 3  Principle 3→ . Identify data science activities as subject-matter inquiry, service, or 
both. Establish the value and priority of each of these purposes.

Bringing it all together, data science capacity, and the skills to support and expand that capacity, should 
be linked directly to priority tasks and interests, which in turn are tied to core activities, “prepositional 
calculus”, and inquiry versus service.

Finally, put these principles in practice, as with the following examples: 
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Consider a team that focuses primarily on applying data science to the practice of syndromic surveil-
lance. The team carries out tasks primarily related to data engineering (learning about data) and to 
supporting routine analysis of emergency department data (learning from data) for surveilling opioid 
overdose, hurricane-related morbidity, heat-related illness, Covid-19, and other conditions of public 
health interest. Although the team’s work covers all the core activities of data science, they focus 
primarily on the activities concerning obtaining, exploring, and analyzing data. 

Example 1 (about). Among the list of proposed and actual activities directed to assessing or assuring 
data quality and utility, establish relative priorities and contingencies. These activities include at least the 
following:

 Develop, automate, routinize, and integrate measures of the health of data feeds, which in turn 
include characteristics such as completeness, timeliness, conformance to standards, and fitness 
for purpose; products include regular reports, on-demand reports, and summary dashboards.

 Assess value and limitations of data content, such as demographic data as received or as 
imputed.

 Assess mechanics and quality of auxiliary data sources, including laboratory and vital records.

 Assess mechanics and quality of using more than 1 data source for ecological analysis, such as 
merging at ZIP Code or county level, then aggregating post-fusion analytic results.

Example 2 (from). Among the list of proposed and actual activities directed to addressing specific, 
descriptive public health inquiry, establish relative priorities and contingencies. These activities include at 
least the following:

 Measure coverage and representativeness with methods and results that pass peer review.

 Characterize persons included in data sources, by demographic and (inferred) clinical factors.

 Develop and evaluate methods for monitoring specific conditions, integrating external 
knowledge of the epidemiology of those conditions, to detect temporal anomalies in a way that 
balances the utility of automated signals with the effort to attend to those signals.

Example 3 (with).

 Document methods for processing and learning about data sufficient to motivate independent 
re-implementation, in the interest of transparency, reproducibility, and intellectual credit.

 Advance the ability to process and use data from multiple sources.

 Advance the ability to develop data queries with a focus on conditions of interest, going beyond 
matching substrings by including machine-assisted record retrieval and semantic analysis.

 Advance the ability to incorporate temporal and spatial information for detecting anomalies, 
focused on specific conditions and jurisdictions of interest.

This framework for shaping and developing data science capacity does not independently invoke 
learning, because learning is an essential defining characteristic of a progressive culture for data. Rather, 
this framework orients learning toward the rubrics, principles, and practices of doing data science, both 
to prepare to do data science and to do it. In a truly progressive culture, learning that is not specifically 
oriented to a product or service can still serve an essential good, because it prepares the mind to see 
possibility and, one hopes, to keep up with it. Louis Pasteur said, “In the field of observation, chance 
favors only the prepared mind.” (Pasteur and Vallery-Radot)
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5.5 Leading in a progressive culture for data
Data science practitioners and experts—learners and doers—should lead CDC and ATSDR into the 
modern era through learning and advocacy. In a progressive culture for data, leadership is part of the 
practice of data science, and not separate from it. Leaders include practitioners, experts, managers, and 
laypersons, regardless of their career stage, job title or series, credential, or location in the hierarchy. 
Practitioners and experts must play a prominent, visible role in creating and leading a progressive culture 
for data in public health. As professionals who engage directly with data, they should ensure that the 
agency adopts, masters, and promotes an appropriately diverse set of tools and mindsets for using data 
to solve problems by showing how to learn from data and with data and by empowering others to do 
the same. Leadership continually shapes and sustains the culture of good data practice. As a community, 
they need to advocate to ensure that their interests and needs are folded into modernization initiatives 
as the agency becomes better tuned to meeting a modern mission. If learners and doers see leadership 
as separate from the practice of data science, then they risk leaving themselves out.

They should invest in and take pride in personal technical excellence in doing good things with data—to 
construct, analyze, and interpret models of public health or administrative outcomes. To lead, though, 
they need to go further than technical excellence.

They should emphasize learning from data—unlocking meaning through analysis. They need to be as 
practical and solutions-oriented as public health is. And they need to be rigorous, to ensure that all data-
analytic practices hold up to scrutiny, even when there’s honest disagreement about methods or conclu-
sions.

They should be principled pluralists on methodology. They see misapprehension about imputation 
methods (“making up data”), Bayesian methods (“too subjective”), and machine learning (“black box”, 
“data dredging”). But all these methods and more can help us learn from data, if those tools are used 
wisely and well. This is largely what Leo Breiman was saying in 2001 (Breiman 2001).

And they should promote and praise good data-analytic practice, regardless of job title, credentials, or 
occupational series. Everyone who wants to do good things with data should have the intellectual 
support to do so, as long as they proceed with rigor and stand behind their work. This is as true for 
sociologists and microbiologists as it is for epidemiologists and statisticians.

They should provide leadership on how to integrate data science into interdisciplinary efforts and put 
data science on equal footing with other specialties. They need to be able to serve as an integral part of 
a team with collaborators from other backgrounds or disciplines, to apply and translate rigorous data 
science concepts for the benefit of collaborating scientists, and to explore and respect the rigorous 
application of concepts from other domains as part of collaborative undertakings. They must learn and 
practice methods for interpreting complex concepts for nonspecialists, without unduly sacrificing rigor.

That said, experts in data science are the foundation for good practice by practitioners, helping them to 
use data-analytic tools wisely and well. In a progressive culture for data, leadership aims toward and 
flows from practical wisdom.

They should hold fast to solid norms in how they learn from data as a basis for high-consequence 
decisions. The Covid-19 pandemic has been a time of high pressure, fast movement, substantial uncer-
tainty, intense collaboration, and rapid turnover. It can be tempting, under these circumstances, to cut 
corners on rigor—to try to get it done faster but to make concessions on quality. The opposite is 
needed: During times like this, and Ebola and other high-consequence events, integrity is as important as 
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ever. Data science practitioners with varied expertise have shown that they can achieve both high speed 
and high quality.

They should lead from every level. Front-line analysts lead by showing how modern tools and methods 
help solve modern problems. Team leaders and branch chiefs lead by fostering and rewarding curiosity, 
investing in learning (and not just training), and encouraging the interesting mistakes that come with 
innovation. Division and center leaders and associate directors help ensure that our infrastructure—our 
people, processes, and technology—can support modern and future tools and methods. In all of this, 
those who specialize in methodology and analysis lead from wherever they are, so that everyone who 
wants to do good things with data, can.

6 Redux: Who, how, what, and why
I have written about some ways that CDC and other organizations could better support a culture for 
doing good things with data, especially in view of fast-moving methods, tools, and technology. At CDC, 
we have a shared mission, a commitment to public service, and an intense, pragmatic need to draw on 
expertise across disciplines in multifaceted teams. We should surely hire great talent. But we also need 
to tend to staff who are already on board. 

For our data generation, we must foster technical skills and a mastery of technique that allows scientists 
to extract information from data; we must foster intellectual virtues, including practical wisdom, that 
guide both inquiry and self-learning, and that enable scientists to ask good questions and to line up tools 
to answer those questions rigorously with data; and, we must foster a culture of mentoring, peer 
support, and advocacy in a community of practice that empowers data science learners and doers to 
keep up with fast-moving methods, tools, and technology.

Who: Everyone who wants to do good things with data should get to make the effort, as long as 
they are rigorous and accountable.

How: At the individual level, data science calls for technical skills in computation and data 
analysis and nontechnical skills to keep inquiry directed toward learning from data and to deal 
with obstacles. At the collective level, it calls for a progressive culture that supports putting 
those skills to use for doing good things with data.

What: Data science studies how to learn from data by combining analytic, computational, and 
subject-matter methods to connect the whole life cycle of data, subject to norms of scientific 
quality and analytic rigor.

Why: Foremost, data science is about learning from data. Data science helps us to keep up with 
fast-moving methods, tools, and technology for learning from data of all structures, sizes, shapes, 
and speeds.

A progressive culture remains rooted in history and continues to learn from old data in new ways, and it 
anticipates the future and handles evolving demands. Cultivating a progressive data culture in the present 
will best position the field of public health as ever ready to learn from and act on data.

7 I get to do data science
Who gets to do data science? I do!
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7.1 How I think about data science
In January 2015, I started in CSELS as CDC’s first, and (for at least 7 years) only, Associate Director for 
Data Science (ADDS). NIH had an ADDS by that time, and other CDC centers have had informatics or 
statistics leads, and some now have data science leads. But the title ADDS remained unique within CDC. 
I stepped into the role about 15 years after becoming a CDC employee and about 30 years after I first 
started working with data, statistics, and computing. In the role of CSELS ADDS, I tried to make sense 
and nonsense of the term “data science”, thinking through what data science is and is not, why it 
matters for CDC, and most importantly how CDC can do public health better by doing data better. 
Early on, my favorite framing became not the definitional “What is data science?” but the cultural “Who 
gets to do data science?”

My personal values motivated me to pursue technical excellence and to offer those skills in public 
service. I entered public health because I wanted to use rigorous methods to help better the human 
condition. I am a methodologist, trained in math, statistics, some philosophy, and a smattering of other 
disciplines. I like to figure out how one can measure and count what is observed and quantify uncer-
tainty about what remains beyond direct observation. Our culture perpetuates the notion that, with the 
inevitable march of dispassionate science, humanity will take the upper hand against what threatens or 
saddens us. How does a scientist resolve the apparent discordance between values and the cultural myth 
of dispassionate objectivity? We start by acknowledging the tools and power of scientific inquiry, and we 
respect their role in how we develop knowledge about the world. Values motivate and shape scientific 
endeavors, and passion itself can fuel scientific pursuits. None of us should shrink from or apologize for 
our commitment to the mission of public health. Our stories from data necessarily express perspectives 
and values; we have to commit to portraying and defending those worldviews.

My mentoring experience is the single greatest influence on how I think and talk about the values that 
can motivate and shape data science, as well as the skills that undergird data science practice. Since early 
2000, I’ve had the pleasure of mentoring dozens of early-career scientists—post-doctoral fellows in the 
EIS program, Prevention Effectiveness, Public Health Informatics, and the Oak Ridge Institute for Science 
and Education (ORISE); undergraduate, master’s, and doctoral students; all budding scholars and profes-
sionals in public health, medicine, philosophy, physics, mathematics. Into each of these relationships, I 
have poured a bit of myself and my respect for managing data, for coaxing meaning from data, for 
delighting in discovery from data, and for sharing stories from data with colleagues. Every one of these 
mentoring relationships has changed me as a data scientist and reinforced my belief that learners believe.

I came to believe 2 things about the practice and profession of data science in my time at CDC: 
(1) Everyone who practices data science should have the intellectual support to do so rigorously, 
whether a statistician, epidemiologist, philosopher, or some other brand of scholar. Rigorous practice 
entails standing behind your methods and conclusions, which can be an intimidating duty when reaching 
beyond your expertise. (2) Everyone who commits to doing data science as a profession should accept 
the intellectual responsibility to contribute their expertise, both collaborating with and leading scientists 
from other disciplines. We have to commit ourselves to communicating clearly with those who share 
our specialty and with those who don’t but who respect the ways that our specialty bolsters and 
advances public health research and practice. 
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7.2 My personal history with data science
I’ve been practicing or professing data science one way or another for a long time, typically under the 
title statistician or mathematical statistician or methodologist. When I was 5 years old in first grade, I 
thought that I might want to be a mathematician (or an artist or a basketball player). In sixth grade, I got 
to play with an Apple II, with its BASIC programming and 5.25-inch floppy diskettes. As an under-
graduate, I helped teach the obscure but powerful programming language APL (literally “A Programming 
Language”) to high school students. I earned a Bachelor of Arts degree in mathematics in 1991 and a 
Doctor of Philosophy degree in statistics in 1997.

In late 1997, about 2 months after filing my dissertation, I started with CDC as a contractor in the 
Division of Reproductive Health (DRH). I became a federal employee in early 2000, continuing to work 
in DRH, mostly on cohorts and clinical trials, until late 2004. Then I spent about 3 years overseeing 
CDC’s institutional review boards and thinking about the connection between how we justify research 
risk and how we learn from data. 

I served from mid-2007 through early 2015 in the Division of Tuberculosis Elimination (DTBE), working 
largely on clinical trials and creative but rigorous ways to get better at finding TB to stop TB. While in 
DTBE, I became a self-appointed evangelist for the R statistical computing environment. In 2012, I articu-
lated a vision for leadership in mathematical sciences, which included skills specifically in technical 
excellence and clear communication—the seeds of my belief in leadership in a progressive culture for 
data. In March 2014, I spoke on “A Scrappy Little Division That Cares a Lot About Data: A Vision for 
Data Sciences in DTBE”. That presentation included my first use and definition of the phrase “data 
science[s]”, with particular attention to “data science tasks: end to end”, later called the data life cycle. 

In August 2015, shortly after I started as CSELS ADDS, I brainstormed dozens of potential topics for an 
internal CDC blog to explain and promote data science, called “expression(data, science)”. I wrote the 
blog title as if it were in a fictitious programming language, monospace font and all: 
"expression(data, science)". The blog never really happened. This essay revives many of the 
topics that I had brainstormed. 

In November and December 2015, I presented “The Art of Data Science: The Intense Pragmatism of 
Data in the Service of Public Health” at the EIS fall course. I told the story of data science through real-
life experiences of 9 EIS fellows whom I had mentored. Although none of those fellows had had a 
background specifically focused on data analysis, many of them achieved great things with data, and 
others made interesting mistakes worth learning from. 

In May 2016, 14 months into my tenure as CSELS ADDS, I delivered a CSELS science seminar entitled 
“Data Science and Data Wisdom: Cultivating a Data Generation” (a pun on "generating data"; maybe I 
should let up on the puns), in which I laid out the cultural components to support the practice of data 
science. That presentation has evolved over the past few years to become “Who Gets to do Data 
Science? A Progressive Culture for Data in Public Health”, placing data science in the context of related 
but distinct disciplines and emphasizing who does data science more than what is data science.

In my latter days in CSELS, I turned my attention largely to machine learning (ML) and artificial intelli-
gence (AI). We should regard ML as extending the set of data-analytic tools available to us, and we 
should use those tools where they help us learn things about the world—including potentially better 
ways to do public health surveillance and to adapt flexible and powerful ways to find disease and 
improve health. ML, and its scalable applications through AI, should not be mysterious or intimidating, 
and these tools should not be regarded as any more magical than familiar methods. Moreover, they 
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should be subject to the same critical reflection and norms as other methods for scientific inquiry. 
Current agency discussion about the potential for ML and AI risks focusing too narrowly on technology 
and not enough on learning from data in ways that aim for scientific quality and rigor, as discussed at 
length in the sections 3.1 and 3.2 above: from posing questions of social value and scientific validity 
through ensuring that conclusions are traceable and defensible, that reasoning is coherent, and that the 
whole process is neutral, subject to minimal subjective bias, rigorous, transparent, reproducible, and so 
on. I expand further on ML and AI in section 8.

7.3 Why a progressive culture?
By the end of 2016, when I had been the CSELS ADDS for almost 2 years, CDC's Surveillance Strategy 
had successfully led to demonstrable improvements in technology for mortality records, case-based 
surveillance, syndromic surveillance, and laboratory-based surveillance. Early formative efforts for a 
fledgling Public Health Data Strategy in 2018 tapped dozens of midcareer and senior leaders to shape 
next-phase modernization. From those early days, I lodged 2 substantive concerns: (1) Regarding data, 
staff who work directly with public health data should join in co-leading the nascent data strategy 
because they know first-hand the challenges that they have in getting things done with data. 
(2) Regarding modernization, early-career staff should also join in co-leading the modernization effort, 
because they are more likely to have an essentially modern take on data and progress than mid- and 
late-career leaders alone. In August 2018, I nominated a “data science breakfast club”—an interdisci-
plinary collection of a dozen early-career data science practitioners—to discuss their experiences doing 
data science at CDC and how CDC could effectively develop a data science-savvy workforce. By early 
2019, neither concern about data leadership and modernization leadership had gained appreciable 
traction, and the breakfast club never convened. I was told that the “movement" was open to early-
career and data-involved staff, but it became clear that the movement would not engage them inten-
tionally on their terms, for their co-leadership.

The strategy also struggled to describe why it was important to do data better. The emerging federal 
data strategy acknowledged the importance of data as an asset. And both the federal level and agency 
level connected that asset to informed decision-making and action. But neither the federal level nor the 
agency level explicitly articulated in what sense data were an asset and in what way data could inform 
decisions and action. I developed and shared a metaphor that we were conceiving of data as a treasure, 
and we were coming to acknowledge that we were largely hoarding that treasure, as if in a cave. Like 
the treasure in a cave, data are an asset because they have value, but we realize that value only when we 
use or spend rather than store the data. Data have value because we use data to learn things about 
the world and to do things with what we learn, including but not limited to making decisions and 
taking action. Data have value because we use them to build things, like artificial intelligence tools, that 
promise to help us interact with the world more efficiently and effectively.

I became disheartened by what I perceived as regressively narrow thinking and behavior. Nonetheless, I 
still believed that the intentions of the emerging strategy were largely sound. So I inverted my pessimism 
and asked, "What would it take for CDC to be progressive?" About 3 months later, I had drafted a 
manifesto for a progressive culture for data in public health, appended to this essay (page 46).

In 2019, the Public Health Data Strategy merged with the concurrently emerging Information 
Technology Modernization Strategy to become the Public Health Modernization Initiative and eventually 
the Data Modernization Initiative (DMI). In August 2019, as the Surveillance Data Platform was wrapping 
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up its work, a presentation on the merged modernization initiative enumerated 5 pillars for a modern-
ization strategy. Despite the strategy’s stated intent to develop “world-class analytics”, nothing in the 
pillars addressed the role of analysis. When I pointed this out, I was told that it was implicit in all 5 
pillars. A value that is not explicitly stated risks getting ignored. With DMI came initial political success in 
the form of $50 million in appropriation to seed the effort, fleeting moments before the Covid-19 
pandemic pushed modernization efforts and funding into overdrive. DMI and concurrent investments 
have prepared the public health sector to advance more rapidly in response to the pandemic than ever 
expected. Nonetheless, DMI remained slow to engage data practitioners and early-career professionals 
as leaders in this data revolution. Thus, the manifesto still complements DMI as a vision for realizing the 
value of data as an asset in a culture centered on the roles of data practitioners and experts, learners 
and doers. 

That manifesto is now an organizing principle for this essay. In the manifesto, I state, “a progressive 
culture remains rooted in history and continues to learn from old data in new ways.” This collection is 
itself rooted in a personal history.

8 Machine learning and artificial intelligence
CDC should think about machine learning (ML) as a collection of data-analytic methods (most of them 
decades old) akin to statistical methods. This collection of methods extends the set of tools that we 
have for extracting information from data and putting that extracted information to use, typically for 
finding patterns in data or guessing a likely output based on a set of inputs. Artificial intelligence (AI), in 
current practice, applies ML and other data-analytic methods to automate or assist with various tasks, 
especially repetitive tasks. Indeed, it is because AI follows largely from applications of ML that I write the 
pair as “ML/AI” rather than the opposite: ML leads and grounds AI.

Like other data-analytic methods, ML methods should be used with critical reflection: How well does a 
model perform on new data? How well does it hold up under different assumptions? Does it perform 
consistent with norms like fairness? As an application of those methods, AI should be subject to the 
same critical reflection and norms. 

ML and AI can be simple or complex, but they don’t have to be mysterious. CDC should use these 
wherever they help CDC achieve its mission better. CDC should not, however, use these tools just for 
the sake of it, just to satisfy a consultant’s recommendation, or just to appear modern. 

The following discussion proposes how to demystify ML and AI by establishing them in context: where 
ML/AI fit in with more familiar, related concepts; were ML/AI fit in with related data-oriented methods; 
where ML/AI fit in history; where ML/AI might fit in a data-supportive organization; and where ML/AI 
have already been practiced by CDC/ATSDR.

8.1 Context: what is familiar or known
People who have no direct experience with ML and AI especially conceive of ML and AI in many ways 
that don’t relate very closely to what CDC might do with them. For example, I have heard it sincerely 
posited that ML is about robots—literally, machines learning. Some machine learning approaches do 
support robots, but that’s not the most common or important meaning for CDC’s purposes.

ML has been described as answering the question, “How can computers learn to solve problems 
without being explicitly programmed?” (Koza et al. 1996) I don’t find that formulation especially useful 
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for people who aren’t already familiar with the idea. Let’s rephrase this question as “How can 
computers look at examples and figure out patterns that can be applied to new data?” Those examples 
that computers look at are data, and “figure out patterns” means the use of algorithms to develop a 
model or representation for those patterns. In other words, ML is a collection of data-analytic 
methods, typically used for finding patterns in data or guessing a likely output based on a set of 
inputs. 

 Finding patterns in data could involve putting counties into groups that are demographically 
similar or grouping tweets on a common topic. Pattern-finding tasks, called unsupervised 
learning, include methods such as cluster analysis or topic modeling. 

 Guessing a likely output based on a set of inputs is also known as prediction; it could entail a 
best guess at whether a child meets the surveillance case definition of autism given just the 
words of their educational and psychological evaluations. Output-oriented tasks, called super-
vised learning, include methods such as regression and classification. 

In publications that apply machine learning to public health issues, classification has appeared far more 
commonly than the other tasks, often as an application for separating cases from noncases.

An initial note on the word “prediction” in the previous paragraph: In the context described above, 
prediction focuses on relating an outcome—the predicted value—to corresponding given inputs, 
typically called “features”. In contrast with its everyday use, the word “prediction” in this context might 
or might not have anything to do with the future. In the autism example above, a child’s current case 
status is predicted from their existing evaluations. As another example, a model could be constructed to 
predict who will receive a Parkinson’s disease diagnosis given their past claims history; this example 
includes a time component and a sense of the future, but even in this example, the model is developed 
from past data and continuously evaluated against future accumulating data.

Since ML focuses on using data for these tasks, it should be thought of principally as an analytic appli-
cation, subject to scientific norms the same as or similar to the norms applied to other empirical, 
analytic approaches, like statistics or causal inference. (See section 4.2.)

In predominant current practice, AI is the application of ML to automate or assist with recurring 
tasks, especially scaling up repetitive tasks, such as assessing a patient’s possible case status given their 
electronic health record. AI should be thought of principally as an application of technology, but the 
underlying ML should still be subject to scientific norms for data analysis.

In summary, we can think of ML (approximately) as data-analytic methods or practices and AI as the 
results of those data-analytic methods or practices deployed as applications to automate or assist with 
recurring tasks, especially when repeated at a large scale.

8.2 Context: methodology

8.2.1 Machine learning and statistics
As briefly mentioned above, ML should be put into the context of other data-analytic practices, including 
classical statistical analysis and causal inference, among others. This is true all the more because ML and 
statistical methods overlap. For example, logistic regression can be applied to a binary classification task 
(as an ML method) or to the task of estimating the probability of an outcome being present or absent 
given covariate values (as a common statistical method).
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ML tends to focus on model performance, such as a measure of how well an output can be associated 
with inputs, especially inputs that the ML hasn’t seen yet; this is called out-of-sample performance. In 
contrast, statistical applications tend to focus on the internal structure and goodness-of-fit of the 
analytic model, typically intending to assist with explanation. This contrast is sometimes described in 
terms of ML focusing on ŷ , denoting the estimated value of the response, and statistics focusing on β̂ , 
denoting estimated model parameters, such as regression coefficients.

ML tends to handle complex or nontraditional data structures better than common statistical methods 
do, including images, free text, and electronic health records, but statistical models can also be large or 
complex. Statistical models are typically based on explicitly constructed probability models; although 
such models can be large or complex, the size and complexity might be constrained to facilitate inter-
pretability of the model. In contrast, since ML models tend to focus on performance rather than 
interpretability, complexity in and of itself is more acceptable when added model complexity improves 
model performance and avoids the disadvantages of overfitting.

ML tends to handle larger numbers of inputs, hence larger numbers of model parameters, better than 
common statistical methods. In traditional statistical practice, several heuristics might be used to 
constrain model size, including stepwise variable selection, best-of-all-subsets regression, and penalties 
that force a tradeoff between model fit and model size. ML methods deal with potentially large numbers 
of inputs in 2 main ways: feature engineering, which seeks to derive more performative inputs from old 
inputs (one example being principal components), and regularization, which trades off between model 
performance and model size by figuring out ways to downweight or upweight inputs for optimizing out-
of-sample performance. To be sure, statistical models can and do use some of the techniques described 
here for ML models.

Table 4. Typical differences between machine learning and statistics

Machine learning tendencies Statistics tendencies

Model Model performance, especially for associ-
ating outputs ( ŷ ) with inputs ( x )

Model structure and fit ( β̂ ); “inter-
pretability”

Data structure Complex or nontraditional data, such as 
free text

Highly structured data, especially tabular

Data breadth Large number of inputs, complex models Constraints on number of inputs or 
model complexity

I have listed 3 main contrasts between ML and statistics: (1) a focus on model performance vs model fit, 
(2) facility for complex or nontraditional data structures, and (3) facility for larger numbers of inputs. 
These are not sharp, exclusive distinctions, and they are not the only distinctions. Even with these differ-
ences in orientation and approach, ML, statistical, and other data-analytic models should be subjected to 
similar levels of scrutiny and rigor, as well as other norms such as accuracy (and its many variations), 
fairness, bias mitigation, interpretability, and explainability. Of note, interpretability and explainability can 
be distractions, as apparently interpretable models are not necessarily closer to being true than complex 
or obscure models.

Just as ML should be put into the context of other data-analytic methods and practices, AI should be put 
into the context of other data-analytic applications. Although AI is often implemented to automate and 
assist with tasks at scale, such as decision-making, other data-analytic methods similarly undergird 
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practical applications. For example, the Framingham risk score, commonly used in medical practice, was 
derived from empirical data on thousands of participants. Many other algorithms were similarly empiri-
cally derived. Those applications and AI applications share some common concerns: 

 Do the underlying data-analytic models conform to scientific norms? 
 Are the models subject to undue bias or other characteristics that could affect or limit their 

applicability? 
 Do those limitations breach ethical, legal, or social norms, for example, by imposing or leading 

to unfair conditions or outcomes? 

Most of these concerns pertain to algorithmic decision-making in general rather than AI in particular. 
Some unique concerns, however, arise from the potential for AI applications to be especially complex or 
dynamic by continuing to learn from accruing data, such as challenges in identifying conditions or sets of 
input values under which the model performs especially poorly or identifying changes in model perfor-
mance as training data accumulate over time.

8.2.2 On “predictive analytics”, ML, and AI
In the early days of CDC’s Public Health Data Strategy, it was asserted that “predictive analytic tools 
such as machine learning” hold the answers for modernization. The assertion seems to assume that 
perfect, high-speed data can inevitably support informed action to intervene in public health, especially 
outbreaks, if only the best methods are used. For example, one presentation said that “the reality” is 
“looking back: using data to see what has already happened” and “the opportunity” is “looking forward: 
using data to predict and prevent threats” (original emphasis). The same presentation asserted the 
goal “to transform CDC and our partners from a culture of primarily historical data analytics to 
predictive data science …”.

No doubt better data should lead to better learning, but analytic methods must also adequately account 
for the limits of information inherent in the combination of data and methods; otherwise, we risk 
mismatching expectations with realistic possibility. An emphasis on “predictive analytics” does not 
acknowledge the real limits of even the best data and tips over into a (likely unintended) undervaluing of 
cumulatively understanding history. AI might or might not aid in making better decisions. Data-analytic 
workflows can improve our ability to forecast, anticipate, and preemptively intervene, but we should 
take care not to tip the balance too far. Even when we are able to attend as completely as possible to 
forward-looking workflows, we will still be primarily (my emphasis) looking back to see what has 
already happened. Getting smarter and more nimble about the future still requires us to remain rooted 
in history. I would like to see a responsible treatment of how to use all available tools—classical and 
conventional, statistics and machine learning, correlation and causation—and those yet to be available, 
to achieve public health practice that is less exclusively reactive and reactionary.

8.3 Context: history
The January 2022 report Protecting the Integrity of Government Science by the Scientific Integrity Fast-Track 
Action Committee states: 

New technology and new approaches to science—such as big data analytics, AI, and ML—have 
become central to many areas of science and Federal decision-making. While these technological 
advances provide opportunities to more deeply and efficiently learn about the world, they also 
present unique challenges and complexities for ensuring scientific integrity. … Additionally, 



A culture for doing good things with data

43

scientific integrity policies can be extended to offices and work units not traditionally focused on 
research and that make use of the results of AI and ML-based analyses.” (Scientific Integrity Fast-
Track Action Committee 2022, p 27-28)

This passage includes a rare and important acknowledgment that data analyses, including those that are 
nonresearch, should come under policies for scientific integrity. Like the “predictive analytics” example 
above, however, it overstates the “new approaches” and “unique challenges and complexities” stemming 
from ML and AI. Although AI can introduce complex issues in assistance and automation technologies, 
the upstream issues that arise from data analysis are not especially unique to ML or AI. 

People at CDC often talk about ML and AI as new methods or new technology. Some methods, 
especially those associated with deep learning, are relatively new and yet their potential is familiar 
because of their widespread use in search engines and smartphones. But other methods and uses for ML 
go back decades. For example, early neural networks became popular in the 1980s, classification and 
regression trees were publicized in 1984, support vector machines in the 1990s, and random forests in 
2001. This isn’t a quibble about history so much as encouragement to see these methods as perhaps 
unfamiliar rather than new, and to realize that all these methods have been subjected to vigorous, and 
often rigorous, analysis, testing, and critical examination. Thus, they can be applied with confidence 
similar to more familiar methods of comparable complexity as well as subject to similar scrutiny.

As mentioned above, while ML and AI can be more complex than familiar statistical methods and their 
applications, ML and AI inherit longstanding issues common to other forms of data analysis and applica-
tions, including bias and privacy concerns. In that regard, all data and analytic efforts should take care to 
elucidate potential biases and to promote transparency. Where the data are complex or the methods 
are complex, these efforts warrant special attention and perhaps special methods because of the 
complexity. Whether complex Bayesian methods, methods using rich electronic health records, multilevel 
surveys, data synthesized from sources of varying content and quality, all complex data and complex 
methods warrant critical scientific thinking and problem-solving, not because they use ML or AI. In 
contrast, if concerns arise from uncritical reliance on assistive or automating algorithms, then the unique 
criticism inheres more to that uncritical reliance than to the algorithms themselves.

Furthermore, many ML methods have already been applied to public health problems in hundreds of 
published, peer-reviewed manuscripts. Many dozens of those manuscripts have either included an author 
with CDC or ATSDR affiliation or have resulted from a project funded by CDC/ATSDR. See, for 
example, Goertzel et al. (2006), Holt et al. (2009), Menon et al. (2014), Gu et al. (2015), Petersen et al. 
(2015), Bertke et al. (2016), Ladd-Acosta et al. (2016), Maenner et al. (2016), Rubaiyat et al. (2016), 
Arnold et al. (2017), Goldstick et al. (2017), Kracalik et al. (2017), Bowen et al. (2018), Meyers et al. 
(2018), Yanamala et al. (2018), Lee, Levin, et al. (2019), Lee, Maenner, et al. (2019), and Wheeler (2019). 
These publications span applications to infectious and noninfectious conditions as well as cross-cutting 
areas like syndromic surveillance. They entail ML methods that include regularized regression, decision 
trees and tree-based ensembles (like random forests and gradient-boosting machines), support vector 
machines, other ensemble methods (like the super learner), and a variety of shallow and deep neural 
network architectures. Although most publications use supervised learning methods, especially classifi-
cation, many use unsupervised methods, such as topic modeling.

In the current context, CDC is positioned to continue contributing rigorous work that employs ML 
methods, especially as the base of R and Python users grows within the agency to take advantage of 
high-quality, open-source tools. CDC’s greater technical challenges at the moment entail incremental 
uptake of cloud-enabled technologies and supporting operations for deploying trained models, especially 
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deep learning models that use graphics processing unit (GPU) hardware. Early efforts with proven 
models have been stymied by procedural glitches that prevent real implementation as AI. Nonetheless, 
because AI is seeing an ever-expanding collection of useful applications in clinical medicine, the prospects 
are strong for public health applications. For example, methods for using rich, possibly messy electronic 
health records hold promise for applications as varied as self-adapting triggers for electronic case 
reporting, enriching the use of emergency departments and other sources for syndromic surveillance, 
and forecasting the population prevalence of a wide variety of conditions, including autism spectrum 
disorder and Parkinson’s disease. ML might or might not help with general forecasting and outbreak 
analysis, as other statistical methods could be suited for those purposes and warrant as much develop-
mental attention as ML does.

8.4 Context: organizational culture
As we try to imagine the possible applications for ML and AI to CDC’s mission, we should also concep-
tualize how ML and AI are normalized within the organizational structure. It has already happened, and 
will continue to happen, that every center at CDC uses ML in some way. Yet there is no central 
leadership on ML or AI.

Foremost, because ML undergirds AI, and because ML and other data-analytic approaches should be 
similarly subject to scientific norms, it follows that ML rather than AI should drive both growth and 
practice. If CDC promotes AI out of balance with ML, then we risk deploying technologies and 
purported solutions that do not hold up to scientific scrutiny, where out-of-sample performance, bias, 
and drift go underappreciated and undermine scientific integrity.

Furthermore, efforts to fortify workforce capacity should focus primarily on analytic literacy, including 
critical thinking and assessment. While CDC unquestionably needs ML engineers and other technology-
adept skills, those roles and skills need to be carried out within the bounds of credible scientific 
practice. I draw here on the more general discussion in section 4 on how to foster a culture for doing 
good things with data by investing in technical skills, nontechnical skills, and community, tailored here to 
ML and AI. Many of these skills already exist in CDC’s existing workforce, largely underrecognized and 
underappreciated. If CDC can come to recognize and appreciate existing technical and nontechnical 
skills among current federal employees, fellows and other learners, and nonfederal staff, then we can 
build on those skills faster. Moreover, as we work toward expanding capacity in ML and AI, we should 
include current data-analytic practitioners (including those who use ML) in leading those efforts. Finally, 
as we build capacity, we need to balance innovation with a respect for history. While we should 
continue to expand the set of tools available to us for learning from data and building things using data, 
we can’t afford to lose sight of existing methods that also serve our purposes.

The Department of Health and Human Services locates AI leadership within its Office of the Chief Infor-
mation Officer. In my view, this office is predicated on some fundamental category errors that threaten 
to constrain or misdirect efforts to use and apply the full set of methods for learning from data and 
building things with data. The office’s very definition of ML as “a type of artificial intelligence” (HHS 
OCIO 2021) obscures more than it reveals. This framing has precedent, as when MIT’s management 
school presents ML as a subfield of artificial intelligence (Brown 2021). As I argued above, because ML 
methods “learn” from data, ML is about data analysis; I further argue that ML should be judged in ways 
similar to other empirical, specifically data-analytic, approaches. It is important to see ML as connected 
to the full range of data-analytic methods and tools, for at least 2 reasons: (1) Statistical and machine 
learning methods, and other data-analytic methods (such as causal inference), all have formal methods 

https://www.hhs.gov/about/agencies/asa/ocio/ai/index.html
https://www.hhs.gov/about/agencies/asa/ocio/ai/index.html
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for characterizing performance and optimization, and those methods connect across fields. ML is not 
just a set of methods unto itself, but it emphasizes characteristics that differ from other domains. (2) By 
subsuming ML under AI, we lose the understanding that even conventional, classical statistical methods 
can drive AI, and we risk burdening ML practice more broadly. Without that grounding in science and 
related norms, ML and AI risk giving too much privilege to model performance. Indeed, the move to 
delimit “trustworthy” AI seeks out trustworthiness norms for this reason. While important concerns 
arise from implementing algorithms to assist or to automate, we can and should distinguish upstream 
issues, for example, that stem from input data or from model structure.

If CDC develops central leadership on ML and AI, it should not follow HHS’s lead by aligning ML/AI 
primarily with technology. Instead, CDC should align ML/AI primarily with the practice of science, 
specifically data-intensive science, with all the norms that that entails. As I argued above, technology 
should take its lead from scientific interests. Technology can help to show what is possible, but it should 
neither push nor limit what is possible, within resource and security constraints. Technology should 
respond to and empower scientific advances.
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Manifesto: a progressive culture for data in public health
A progressive culture for data in public health keeps up with fast-moving methods, tools, and technology 
for continuously learning things about the world and empowering choices informed by those learnings. 
This manifesto frames the major elements for cultivating and sustaining this progressive culture and for 
leading public health into the modern era. Public health scientists who care about data can flourish in a 
culture that fosters technical skills, inspires and rewards intellectual drive, and supports learners in com-
munity.

 Technical skills include math and statistics, programming and data structures, communications 
and visualization, and domain knowledge in public health and allied fields.

 Nontechnical skills put the traits of a good learner or knower into action, motivating and en-
abling those who care about data to learn and to practice wisely.

 Support for empowering and doing good things with data comes from a community of peers, 
mentors, and advocates centered on learning.

A progressive culture for data in public health manifests the following principles:

1. Data as object: A progressive culture for data is dedicated to learning from data. In a progres-
sive culture, data have value because they mediate how we learn things about the world. Those 
learnings allow us to make informed choices about how we interact with the world, for exam-
ple, through public health interventions.

2. Data as subject: A progressive culture for data is dedicated to learning about data, because data 
come in many structures, sizes, shapes, and speeds, from small, flat data tables to massive, un-
structured data streams. Data conform to a variety of standards, or no standards at all. The var-
ied characteristics and complexity of data both enrich and constrain the ways that data reveal 
characteristics of the world.

3. Data as mediator: A progressive culture for data is dedicated to learning with data through its 
full life cycle1, primarily through knowing how analytic methods allow us

3.1. to pose rich questions about the world, amenable to rich methods;
3.2. to guide how we generate, transmit, obtain, and prepare data;
3.3. to probe data to answer questions about the world;
3.4. to place answers from data in context, mindful of assumptions and alternatives;
3.5. to present data-driven answers to audiences clearly and correctly;
3.6. to preserve those answers and ensure that the entire life cycle is transparent, accessi-

ble, traceable and, to the extent possible, reproducible.

4. Community supports doing good things with data through 4 primary roles:

4.1. Learner-practitioners with basic or intermediate data skills come from any discipline 
to do good things with data, mindful of the full life cycle of data. In a progressive culture 
for data, everyone who wants to do good things with data has the intellectual support 
to do so, accepting that they must proceed with rigor and stand behind their work. 
Practitioners learn continuously and show how modern tools and methods solve mod-
ern problems.

1 Items 3.1-3.5 are adapted from The Art of Data Science.
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4.2. Expert practitioners go deep on data science methods. Experts help ensure that every-
one who wants to do good things with data, can. They set norms for the practice of 
data science and for learning from, about, and with data. They enable, guide, correct, 
and empower practitioners to proceed with rigor and stand behind their work.

4.3. Managers supervise practitioners and experts, to ensure that they have the resources 
and direction that they need to achieve good things with data, now and in the future. 
Managers foster and reward curiosity, invest in learning (not just training), and encour-
age innovation and interesting mistakes. They advocate for the means to enable practi-
tioners and experts to continue increasing their capability, efficiency, and effectiveness. 
Managers hold practitioners and experts to account for producing knowledge learned 
from, about, and with data.

4.4. Lay advocates work in community with practitioners, experts, and managers as persons 
literate in the value of data to help learn things about the world. Laypersons know how 
to assess, use, and advocate for learning from data. They help ensure supportive re-
sources to enable learning.

5. Members of a progressive culture for data respect the fundamentals, value innovation, and 
practice pragmatic, principled pluralism. Members apply wisely and well all methods that can 
help them achieve technical excellence to learn from, about, and with data. These methods in-
clude the classical, conventional, and innovative; statistics and machine learning; correlational, 
causal, and predictive inference; analysis, synthesis, and forecasting. Principled pluralism allows 
honest disagreement about methods, results, and interpretation.

6. A progressive culture for data in public health fosters public trust, motivated by public service 
to conduct itself ethically, protect privacy, and ensure that data and methods are radically 
open and transparent.

7. In a progressive culture for data, leadership is fiercely and intentionally inclusive, continually 
shaping and sustaining the culture of good data practice. Practitioners, experts, managers, and 
laypersons lead from every level, regardless of their career stage, job title, credential, or job se-
ries, so that everyone who wants to do good things with data, can. In a progressive culture for 
data, governance enables effective leadership, but governance does not substitute for leadership.

The public health sector faces constant challenges to stretch modest resources, to anticipate and re-
spond to threats, and to promote population health. A progressive culture remains rooted in history 
and continues to learn from old data in new ways, and it anticipates the future and handles evolving de-
mands to keep up with fast-moving methods, tools, and technology. Cultivating a progressive data cul-
ture in the present will best position the field of public health as ever ready to learn from and act on 
data.
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