Dealing with Data

Psy 313 Project Help

TODAY!! (5/13)

  • group project teams
  • compute scale scores
    • YOUR measure
    • your convergent measure
      • reverse–score if needed
  • share SPSS syntax with discriminant group






Note

For presentation, only a brief summary is necessary1, but be prepared for questions (that you will put into paper)

Computing Scale Scores

You’ve already done this with your measure (see Slide 8 for SPSS examples)

Two components:

  1. recode items (if necessary)
  2. compute aggregate scale
** for example, the KEY says to reverse-
  score items Q41_3, Q39_3, and Q40_3
  and the response options are 1,2,3,4,5.

RECODE Q41_3 Q39_3 Q40_3 (1=5) (2=4) (4=2) (5=1).
EXECUTE.
** we decided to name the scale, "construct"
  and it is comprised of items Q1_1, Q1_2,
  and Q1_3.

COMPUTE construct=MEAN(Q1_1,Q1_2,Q1_3).
EXECUTE.

Sona Timeslots

  1. Log in to Sona
  2. Choose your study (My Studies)
  3. Click on Add A Timeslot
  4. Number of Participants = 200
  5. Researcher doesn’t matter – it’s online

Accessing data from Qualtrics

  1. find “Data” tab in Data & Analysis section
  2. export responses as “CSV
  3. select “numeric values”

Control where it’s saved!!

Save the data within your papaja project folder:

Windows ()

Mac ()

SPSS

  1. Open SPSS
  2. File \(\rightarrow\) Import Data1
  3. Paste into a syntax file
  4. Save the syntax file within your papaja folder

papaja

  1. Create a “code chunk”:

  1. Paste the content
## Cynicism

library(dplyr)
library(tidyr)
library(ggplot2)

data <- read.csv("Cynicism Project_April 29, 2025_16.35 2.csv")
names <- data[1,]
names(data) <- names
data <- data[-c(1:2),]

df <- mutate_all(data, function(x) as.numeric(as.character(x)))

reliability <- psych::alpha(df[c(18:31)])  ## 

apa_table(reliability$alpha.drop,
          caption="Our reliability analyses",
          note="anything extra here",
          landscape=TRUE,
          font_size='tiny')

hists <- df %>%
        pivot_longer(
          cols="I would describe myself as emotionally stable.":"I prefer my own company to the company of others."
        )

hists2 <- df %>%
        pivot_longer(
          cols="I find it hard to trust those I am close to.":"Others perceive me as moody."
        )

ggplot(hists, aes(x=value))+
  geom_histogram(aes(y=..density..,fill=name),color="grey80")+
  facet_grid(name~.)

ggplot(hists2, aes(x=value))+
  geom_histogram(aes(y=..density..,fill=name),color="grey80")+
  facet_grid(name~.)
## Relationship well-being

library(dplyr)
library(tidyr)
library(ggplot2)

data <- read.csv("Cynicism Project_April 29, 2025_16.35 2.csv")
names <- data[1,]
names(data) <- names
data <- data[-c(1:2),]

df <- mutate_all(data, function(x) as.numeric(as.character(x)))

reliability1 <- psych::alpha(df[c(43:60)])  ## 
reliability2 <- psych::alpha(df[c(43:45)])  ## 
reliability3 <- psych::alpha(df[c(46:48)])  ##
reliability4 <- psych::alpha(df[c(49:51)])  ##
reliability5 <- psych::alpha(df[c(52:54)])  ##
reliability6 <- psych::alpha(df[c(55:57)])  ##
reliability7 <- psych::alpha(df[c(58:60)])  ##

apa_table(reliability1$alpha.drop,
          caption="Our overall reliability analyses",
          note="anything extra here",
          landscape=TRUE,
          font_size='tiny')

apa_table(reliability2$alpha.drop,
          caption="Forgiveness subscale",
          note="anything extra here",
          landscape=TRUE,
          font_size='tiny')

apa_table(reliability3$alpha.drop,
          caption="Conflict Resolution subscale",
          note="anything extra here",
          landscape=TRUE,
          font_size='tiny')

apa_table(reliability4$alpha.drop,
          caption="Trust subscale",
          note="anything extra here",
          landscape=TRUE,
          font_size='tiny')

apa_table(reliability5$alpha.drop,
          caption="Respect subscale",
          note="anything extra here",
          landscape=TRUE,
          font_size='tiny')

apa_table(reliability6$alpha.drop,
          caption="Kindness subscale",
          note="anything extra here",
          landscape=TRUE,
          font_size='tiny')

apa_table(reliability7$alpha.drop,
          caption="Intimacy subscale",
          note="anything extra here",
          landscape=TRUE,
          font_size='tiny')

hists <- df %>%
        pivot_longer(
          cols="Trust - I can share anything with my partner without fear of judgement.":"Intimacy - I am uncomfortable expressing my true thoughts and emotions to my partner."
        )

hists2 <- df %>%
        pivot_longer(
          cols="Forgiveness - My partner tends to hold grudges against me.":"Trust - I feel emotionally safe in my relationship."
        )

ggplot(hists, aes(x=value))+
  geom_histogram(aes(y=..density..,fill=name),color="grey80")+
  facet_grid(name~.)

ggplot(hists2, aes(x=value))+
  geom_histogram(aes(y=..density..,fill=name),color="grey80")+
  facet_grid(name~.)
## Sense of humor

library(dplyr)
library(tidyr)
library(ggplot2)

data <- read.csv("Commitment to Social Change & Humor_April 24, 2025_17.03.csv")
names <- data[1,]
names(data) <- names
data <- data[-c(1:2),]

df <- mutate_all(data, function(x) as.numeric(as.character(x)))

reliability <- psych::alpha(df[c(34:57)])  ## combined -- different items in different surveys?

apa_table(reliability$alpha.drop,
          caption="Our reliability analyses",
          note="anything extra here",
          landscape=TRUE,
          font_size='tiny')

hists <- df %>%
        pivot_longer(
          cols="I am the funniest person in my friendgroup":"Some people can be \"too funny\""
        )

hists2 <- df %>%
        pivot_longer(
          cols="Jokes at another person's expense are never okay":"I have an a unique sense of humor"
        )

hists3 <- df %>%
        pivot_longer(
          cols="I often find things funny when I’m alone":"I find it annoying when people joke too much"
        )

ggplot(hists, aes(x=value))+
  geom_histogram(aes(y=..density..,fill=name),color="grey80")+
  facet_grid(name~.)

ggplot(hists2, aes(x=value))+
  geom_histogram(aes(y=..density..,fill=name),color="grey80")+
  facet_grid(name~.)

ggplot(hists3, aes(x=value))+
  geom_histogram(aes(y=..density..,fill=name),color="grey80")+
  facet_grid(name~.)
## Oppression based strain

library(dplyr)
library(tidyr)
library(ggplot2)

data <- read.csv("Humor & Oppression-Based Strain_April 29, 2025_16.40.csv")
names <- data[1,]

names2 <- stringr::str_replace(names, "Rate the following statements to the best of your ability.","")

names(data) <- names2
data <- data[-c(1:2),]

df <- mutate_all(data, function(x) as.numeric(as.character(x)))

reliability1 <- psych::alpha(df[c(66:78)])  ## 

apa_table(reliability1$alpha.drop,
          caption="Our overall reliability analyses",
          note="anything extra here",
          landscape=TRUE,
          align = c("p{10cm}", rep("p{1cm}",8)),
          font_size='tiny')

hists <- df %>%
        pivot_longer(
          cols=" - Because of my identity I feel excluded from my society":" - Because of my identity I may be discriminated against by hospital staff, my general practitioner, my workplace, or my friends"
        )

hists2 <- df %>%
        pivot_longer(
          cols=" - Because of my identity I have been the target of verbal aggressions.":" - Because of my identity I expect to be the target of insults"
        )

ggplot(hists, aes(x=value))+
  geom_histogram(aes(y=..density..,fill=name),color="grey80")+
  facet_grid(name~.)

ggplot(hists2, aes(x=value))+
  geom_histogram(aes(y=..density..,fill=name),color="grey80")+
  facet_grid(name~.)
## Commitment to Social Change

library(dplyr)
library(tidyr)
library(ggplot2)

data <- read.csv("data.csv")
names <- data[1,]
names(data) <- names
data <- data[-c(1:2),]

df <- mutate_all(data, function(x) as.numeric(as.character(x)))

reliability1 <- psych::alpha(df[c(19:33)])  ## 

apa_table(reliability1$alpha.drop,
          caption="Our overall reliability analyses",
          note="anything extra here",
          landscape=TRUE,
          align = c("p{10cm}", rep("p{1cm}",8)),
          font_size='tiny')

hists <- df %>%
        pivot_longer(
          cols="I feel marches/boycotts/protests/etc. are effective means of social change.":"I express my opinion about political issues or organizations when I am with friends"
        )

hists2 <- df %>%
        pivot_longer(
          cols="Indicate to what extent you agree or disagree with the following statements:\nIt takes too much effort to engage in activism and advocacy.":"There is someone else who can handle the issues in the world."
        )

ggplot(hists, aes(x=value))+
  geom_histogram(aes(y=..density..,fill=name),color="grey80")+
  facet_grid(name~.)

ggplot(hists2, aes(x=value))+
  geom_histogram(aes(y=..density..,fill=name),color="grey80")+
  facet_grid(name~.)

SPSS Analyses

** Cynicism
** Relationship well-being

GET
  FILE='C:\Users\foss5527\OneDrive - University of St. Thomas\Desktop\data.sav'.

** individual item histograms.
  
GRAPH
  /HISTOGRAM(NORMAL)=Q36_1.

GRAPH
  /HISTOGRAM(NORMAL)=Q36_2.

GRAPH
  /HISTOGRAM(NORMAL)=Q36_3.

GRAPH
  /HISTOGRAM(NORMAL)=Q41_1.

GRAPH
  /HISTOGRAM(NORMAL)=Q41_2.

GRAPH
  /HISTOGRAM(NORMAL)=Q41_3.

GRAPH
  /HISTOGRAM(NORMAL)=Q38_1.

GRAPH
  /HISTOGRAM(NORMAL)=Q38_2.

GRAPH
  /HISTOGRAM(NORMAL)=Q38_3.

GRAPH
  /HISTOGRAM(NORMAL)=Q37_1.

GRAPH
  /HISTOGRAM(NORMAL)=Q37_2.

GRAPH
  /HISTOGRAM(NORMAL)=Q37_3.

GRAPH
  /HISTOGRAM(NORMAL)=Q39_1.

GRAPH
  /HISTOGRAM(NORMAL)=Q39_2.

GRAPH
  /HISTOGRAM(NORMAL)=Q39_3.

GRAPH
  /HISTOGRAM(NORMAL)=Q40_1.

GRAPH
  /HISTOGRAM(NORMAL)=Q40_2.

GRAPH
  /HISTOGRAM(NORMAL)=Q40_3.


** recodes for reverse-scored items.

RECODE Q41_3 Q39_3 Q40_3 (1=5) (2=4) (4=2) (5=1).
EXECUTE.

** alpha and corrected item-total correlations.

RELIABILITY
  /VARIABLES=Q36_1 Q36_2 Q36_3 Q41_1 Q41_2 Q41_3 Q38_1 Q38_2 Q38_3 Q37_1 Q37_2 Q37_3 Q39_1 Q39_2 
    Q39_3 Q40_1 Q40_2 Q40_3
  /SCALE('ALL VARIABLES') ALL
  /MODEL=ALPHA
  /STATISTICS=DESCRIPTIVE SCALE
  /SUMMARY=TOTAL.

** Aggregate scale score across items.

COMPUTE overall=MEAN(Q36_1, Q36_2, Q36_3, Q41_1, Q41_2, Q41_3, Q38_1, Q38_2, Q38_3, Q37_1, Q37_2, Q37_3, Q39_1, Q39_2, Q39_3, Q40_1, Q40_2, Q40_3).
EXECUTE.

** frequency distribution of our measure.

GRAPH
  /HISTOGRAM(NORMAL)=overall.

*** this is our convergent measure, recode and scale score

RECODE Q43_1, Q43_2, Q43_7 (1=5) (2=4) (4=2) (5=1).
EXECUTE.

COMPUTE quality=MEAN(Q43_1, Q43_2, Q43_3, Q43_4, Q43_5, Q43_6, Q43_7, Q43_8, Q43_9, Q43_10, Q43_11).
EXECUTE.

** frequency distribution of convergent measure.

GRAPH
  /HISTOGRAM(NORMAL)=quality.

** Convergent validity index.

CORRELATIONS
  /VARIABLES=overall quality
  /PRINT=TWOTAIL NOSIG FULL
  /MISSING=PAIRWISE.
** Sense of humor.

GET
  FILE='C:\Users\juar6666\OneDrive - University of St. Thomas\Desktop\DATA.sav'.


** reflecting item responses.
  
RECODE Q55 Q59 Q5.0 Q6 Q53 Q7 Q10 Q49 Q52 Q54 (1=4) (2=3) (3=2) (4=1).
EXECUTE.

** trying to rescue items that "work".

CORRELATIONS
  /VARIABLES=Q9 Q50 Q6 QID1 Q2 Q55 Q59 Q3 Q4 Q5.0 Q57
  /PRINT=TWOTAIL NOSIG FULL
  /MISSING=PAIRWISE.

** testing reliability of subset of items.

RELIABILITY
  /VARIABLES=  Q6 Q9 Q50 
  /SCALE('ALL VARIABLES') ALL
  /MODEL=ALPHA
  /STATISTICS=DESCRIPTIVE SCALE
  /SUMMARY=TOTAL.

** individual item histograms.

GRAPH
  /HISTOGRAM(NORMAL)=QID1.
GRAPH
  /HISTOGRAM(NORMAL)=Q2.
GRAPH
  /HISTOGRAM(NORMAL)=Q55. 
GRAPH
  /HISTOGRAM(NORMAL)=Q59.
GRAPH
  /HISTOGRAM(NORMAL)=Q3.
GRAPH
  /HISTOGRAM(NORMAL)=Q4.
GRAPH
  /HISTOGRAM(NORMAL)=Q5.0.
GRAPH
  /HISTOGRAM(NORMAL)=Q57.
GRAPH
  /HISTOGRAM(NORMAL)=Q6. 
GRAPH
  /HISTOGRAM(NORMAL)=Q53. 
GRAPH
  /HISTOGRAM(NORMAL)=Q7. 
GRAPH
  /HISTOGRAM(NORMAL)=Q58. 
GRAPH
  /HISTOGRAM(NORMAL)=Q8.
GRAPH
  /HISTOGRAM(NORMAL)=Q9.
GRAPH
  /HISTOGRAM(NORMAL)=Q10. 
GRAPH
  /HISTOGRAM(NORMAL)=Q46. 
GRAPH
  /HISTOGRAM(NORMAL)=Q56. 
GRAPH
  /HISTOGRAM(NORMAL)=Q47. 
GRAPH
  /HISTOGRAM(NORMAL)=Q48. 
GRAPH
  /HISTOGRAM(NORMAL)=Q49. 
GRAPH
  /HISTOGRAM(NORMAL)=Q50. 
GRAPH
  /HISTOGRAM(NORMAL)=Q51. 
GRAPH
  /HISTOGRAM(NORMAL)=Q52. 
GRAPH
  /HISTOGRAM(NORMAL)=Q54. 
GRAPH
  /HISTOGRAM(NORMAL)=Q12. 
GRAPH
  /HISTOGRAM(NORMAL)=Q13. 
GRAPH
  /HISTOGRAM(NORMAL)=Q14. 
GRAPH
  /HISTOGRAM(NORMAL)=Q16. 
GRAPH
  /HISTOGRAM(NORMAL)=Q17. 
GRAPH
  /HISTOGRAM(NORMAL)=Q18. 
GRAPH
  /HISTOGRAM(NORMAL)=Q19. 
GRAPH
  /HISTOGRAM(NORMAL)=Q20. 
GRAPH
  /HISTOGRAM(NORMAL)=Q21. 
GRAPH
  /HISTOGRAM(NORMAL)=Q23. 
GRAPH
  /HISTOGRAM(NORMAL)=Q24. 
GRAPH
  /HISTOGRAM(NORMAL)=Q25. 
GRAPH
  /HISTOGRAM(NORMAL)=Q26. 
GRAPH
  /HISTOGRAM(NORMAL)=Q27. 
GRAPH
  /HISTOGRAM(NORMAL)=Q28. 
GRAPH
  /HISTOGRAM(NORMAL)=Q29. 
GRAPH
  /HISTOGRAM(NORMAL)=Q30. 
GRAPH
  /HISTOGRAM(NORMAL)=Q31. 
GRAPH
  /HISTOGRAM(NORMAL)=Q32.
GRAPH
  /HISTOGRAM(NORMAL)=Q33.0.
GRAPH
  /HISTOGRAM(NORMAL)=Q34.
GRAPH
  /HISTOGRAM(NORMAL)=Q35.

** SCALE score - should be consistent with reliability analysis items.

COMPUTE Humor=MEAN(QID1,Q2,Q55,Q59,Q3,Q4,Q5.0,Q57,Q6,Q53,Q7,Q58,Q8,Q9,Q10,Q46,Q56,Q47,Q48,Q49,Q50,Q51,Q52,Q54).
EXECUTE.

COMPUTE Humor2=MEAN(Q12,Q13,Q14,Q16,Q17,Q18,Q19,Q20,Q21,Q23,Q24,Q25,Q26,Q27,Q28,Q29,Q30,Q31,Q32,Q33,Q34,Q35).
EXECUTE.

** frequency distributions of scale scores (ours and convergent).

GRAPH
  /HISTOGRAM(NORMAL)=Humor2.
GRAPH
  /HISTOGRAM(NORMAL)=Humor.

** convergent validity coefficient.

CORRELATIONS
  /VARIABLES=Humor2 Humor
  /PRINT=TWOTAIL NOSIG FULL
  /MISSING=PAIRWISE.
** Oppression based strain.

GET
  FILE='C:\Users\juar6666\OneDrive - University of St. Thomas\Desktop\DATA.sav'.

**reverse both for our and covnergent measure 19-31

RECODE Q55 Q59 Q5.0 Q6 Q53 Q7 Q10 Q49 Q52 Q19 Q24 Q28 Q31 (1=4) (2=3) (3=2) (4=1).
EXECUTE.

** looking at assignment 3 analyses.
  
** individual item histograms first.
  
GRAPH
  /HISTOGRAM(NORMAL)=Q1_1.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_2.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_3.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_1.0.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_2.0.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_3.0.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_1.1.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_2.1.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_3.1.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_1.2.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_2.2.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_3.2.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_1.3.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_2.3.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_3.3.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_1.4.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_2.4.

GRAPH
  /HISTOGRAM(NORMAL)=Q1_3.4.

** Strain alpha (subscale).

RELIABILITY
  /VARIABLES=Q1_1 Q1_2 Q1_3 Q1_1.0 Q1_2.0 Q1_3.0 Q1_1.1 Q1_2.1 Q1_3.1 Q1_1.2 Q1_2.2 Q1_3.2
  /SCALE('Strain Alpha') ALL
  /MODEL=ALPHA
  /STATISTICS=DESCRIPTIVE SCALE
  /SUMMARY=TOTAL.

** Oppression alpha (subscale).

RELIABILITY
  /VARIABLES=Q1_1.3 Q1_2.3 Q1_3.3 Q1_1.4 Q1_2.4 Q1_3.4
  /SCALE('Oppression Alpha') ALL
  /MODEL=ALPHA
  /STATISTICS=DESCRIPTIVE SCALE
  /SUMMARY=TOTAL.

** Oppression-based strain alpha (Overall/Combined).

RELIABILITY
  /VARIABLES=Q1_1 Q1_2 Q1_3 Q1_1.0 Q1_2.0 Q1_3.0 Q1_1.1 Q1_2.1 Q1_3.1 Q1_1.2 Q1_2.2 Q1_3.2 Q1_1.3 
    Q1_2.3 Q1_3.3 Q1_1.4 Q1_2.4 Q1_3.4
  /SCALE('Oppression-Based Strain Alpha') ALL
  /MODEL=ALPHA
  /STATISTICS=DESCRIPTIVE SCALE
  /SUMMARY=TOTAL.

** Strain (sub)scale score.

COMPUTE Strain=MEAN(Q1_1,Q1_2,Q1_3,Q1_1.0,Q1_2.0,Q1_3.0,Q1_1.1,Q1_2.1,Q1_3.1,Q1_1.2,Q1_2.2,Q1_3.2).
EXECUTE.

*Oppression (sub)scale score.

COMPUTE Oppression=MEAN(Q1_1.3,Q1_2.3,Q1_3.3,Q1_1.4,Q1_2.4,Q1_3.4).
EXECUTE.

*Oppresion based strain scale score.

COMPUTE OppressionBasedStrain=MEAN(Q1_3.4,Q1_2.4,Q1_1.4,Q1_3.3,Q1_2.3,Q1_1.3,Q1_3.2,Q1_3.2,Q1_2.2,
    Q1_1.2,Q1_3.1,Q1_2.1,Q1_1.1,Q1_3.0,Q1_2.0,Q1_1.0,Q1_3,Q1_2,Q1_1).
EXECUTE.

** Scale frequency distributions.

GRAPH
  /HISTOGRAM(NORMAL)=Strain.

GRAPH
  /HISTOGRAM(NORMAL)=Oppression.

GRAPH
  /HISTOGRAM(NORMAL)=OppressionBasedStrain.

** correlation between subscales.

GRAPH
  /SCATTERPLOT(BIVAR)=Oppression WITH Strain
  /MISSING=LISTWISE.
** Commitment to Social Change

** grabbing .csv data - make sure to double check "AUTO" variable name changes

GET DATA  /TYPE=TXT
  /FILE="C:\Users\ries6020\OneDrive - University of St. Thomas\data.csv"
  /ENCODING='UTF8'
  /DELCASE=LINE
  /DELIMITERS=" ;,"
  /QUALIFIER='"'
  /ARRANGEMENT=DELIMITED
  /FIRSTCASE=16
  /DATATYPEMIN PERCENTAGE=95.0
  /VARIABLES=
  StartDate AUTO
  EndDate AUTO
  Status AUTO
  IPAddress AUTO
  Progress AUTO
  Duration AUTO
  in AUTO
  seconds AUTO
  Finished AUTO
  RecordedDate AUTO
  ResponseId AUTO
  RecipientLastName AUTO
  RecipientFirstName AUTO
  RecipientEmail AUTO
  ExternalReference AUTO
  LocationLatitude AUTO
  LocationLongitude AUTO
  DistributionChannel AUTO
  UserLanguage AUTO
  QID7 AUTO
  Q1_1 AUTO
  Q2_1 AUTO
  Q3_1 AUTO
  Q4_1 AUTO
  Q5_1 AUTO
  Q6_1 AUTO
  Q7_1 AUTO
  Q8_1 AUTO
  Q9_1 AUTO
  Q10_1 AUTO
  Q11_1 AUTO
  Q12_1 AUTO
  Q13_1 AUTO
  Q14_1 AUTO
  Q15_1 AUTO
  Q16 AUTO
  Q17 AUTO
  Q18 AUTO
  Q19 AUTO
  Q20 AUTO
  Q21 AUTO
  Q22 AUTO
  Q23 AUTO
  Q24 AUTO
  Q25 AUTO
  Q26 AUTO
  Q27 AUTO
  Q28 AUTO
  Q29 AUTO
  Q30 AUTO
  Q31 AUTO
  Q32 AUTO
  Q33 AUTO
  Q34 AUTO
  Q35 AUTO
  Q36 AUTO
  Q37 AUTO
  Q38 AUTO
  Q39 AUTO
  Q40 AUTO
  Q41 AUTO
  Q41_10_TEXT AUTO
  Q42 AUTO
  Q42_7_TEXT AUTO
  Q43 AUTO
  Q44 AUTO
  V67 AUTO
  V68 AUTO
  V69 AUTO
  V70 AUTO
  V71 AUTO
  V72 AUTO
  V73 AUTO
  V74 AUTO
  V75 AUTO
  V76 AUTO
  V77 AUTO
  V78 AUTO
  V79 AUTO
  V80 AUTO
  V81 AUTO
  V82 AUTO
  V83 AUTO
  V84 AUTO
  V85 AUTO
  V86 AUTO
  V87 AUTO
  V88 AUTO
  V89 AUTO
  V90 AUTO
  V91 AUTO
  V92 AUTO
  V93 AUTO
  V94 AUTO
  V95 AUTO
  V96 AUTO
  V97 AUTO
  V98 AUTO
  V99 AUTO
  V100 AUTO
  V101 AUTO
  V102 AUTO
  V103 AUTO
  /MAP.
EXECUTE.

** Convergent measure (5 items, none reflected)

COMPUTE convergent_social=MEAN(Q11_1, Q12_1, Q13_1, Q14_1, Q15_1).
EXECUTE.

*** reflecting responses to 4 reverse keyed items (our scale)

RECODE Q6_1 Q1_1 Q4_1 Q8_1 (1=5) (2=4) (4=2) (5=1).
EXECUTE.

COMPUTE our_social=MEAN(Q1_1, Q2_1, Q3_1, Q4_1, Q5_1, Q5_1, Q6_1, Q7_1, Q8_1, Q9_1, Q10_1).
EXECUTE.

CORRELATIONS
  /VARIABLES=convergent_social our_social
  /PRINT=ONETAIL NOSIG FULL
  /MISSING=PAIRWISE.

Peer Evaluations

Dimensions:

  • Responsibility – fully assuming role as team member & committing to all tasks that are a part of the project (k=5)
  • Communication – ability to communicate in a productive and timely manner (k=5)
  • Dependability – actions consistently matching words (k=5)
  • Flexibility – ability to adapt to changes throughout the project (k=5)
  • Teamwork – ability to compromise and/or successfully navigate disagreements when working as a group (k=5)

preview available here