Basic Probability Concepts
Moments
- \(r\)th (raw) moment: | \(E[X^r]\) |
- \(r\)th central moment: | \(E[(X-E[X])^r]\) |
- Coefficient of skewness: | \(\dfrac{E[(X-E[X])^3]}{(\mathrm{Var}[X])^{3/2}}\) |
- Coefficient of kurtosis: | \(\dfrac{E[(X-E[X])^4]}{(\mathrm{Var}[X])^{4/2}}\) |
Probability Generating Function (PMF)
\[G_X(t)=E[t^X]\] Note that \(E[X]=G'_X(1)\) and \(\mathrm{Var}[X]=G''_X(1)+G'_X(1)-(G'_X(1))^2\).
Moreover, \(G_X(t)=M_X(\ln(t))\) and \(M_N(t)=G_N(e^t)\).
Model Fitting
- Visualize raw data, e.g., using histogram and kernel density estimation (KDE).
- Select candidate distributions based on the shape and characteristics of the data.
- Estimate parameters , e.g., via maximum likelihood estimation (MLE) and method of moments (MoM).
- Assess goodness-of-fit, e.g., using Kolmogorov-Smirnov (KS) test, Anderson-Darling test and chi-square test.
- Model selection, e.g., comparing information criteria (AIC, BIC) and simplicity.