Chapter 5 tidying the raw data into the tidy data using pivot_longer() and separate() functions in the tidyr package
library(tidyverse) iris %>% pivot_longer(cols = -Species, names_to = “Part,” values_to = “Value”) %>% separate(col = “Part,” into = c(“Part,” “Measure”))
# Code chunk 3 for HW1
# transforming our data using group_by() and summarize() functions in the dplyr package
# Because we created the Part variable in our tidy data,
# we can easily calculate the mean of the Value by Species and Part
iris %>%
pivot_longer(cols = -Species, names_to = “Part,” values_to = “Value”) %>%
separate(col = “Part,” into = c(“Part,” “Measure”)) %>%
group_by(Species, Part) %>%
summarize(m = mean(Value))
# Code chunk 4 for HW1
# visualizing our data using ggplot() function in the ggplot2 package
iris %>%
pivot_longer(cols = -Species, names_to = “Part,” values_to = “Value”) %>%
separate(col = “Part,” into = c(“Part,” “Measure”)) %>%
ggplot(aes(x = Value, color = Part)) + geom_boxplot()