Chapter 5 tidying the raw data into the tidy data using pivot_longer()
and separate()
functions in the tidyr package
library(tidyverse) iris %>% pivot_longer(cols = -Species, names_to = “Part,” values_to = “Value”) %>% separate(col = “Part,” into = c(“Part,” “Measure”))
# Code chunk 3 for HW1
# transforming our data using group_by()
and summarize()
functions in the dplyr package
# Because we created the Part
variable in our tidy data,
# we can easily calculate the mean of the Value
by Species
and Part
iris %>%
pivot_longer(cols = -Species, names_to = “Part,” values_to = “Value”) %>%
separate(col = “Part,” into = c(“Part,” “Measure”)) %>%
group_by(Species, Part) %>%
summarize(m = mean(Value))
# Code chunk 4 for HW1
# visualizing our data using ggplot()
function in the ggplot2
package
iris %>%
pivot_longer(cols = -Species, names_to = “Part,” values_to = “Value”) %>%
separate(col = “Part,” into = c(“Part,” “Measure”)) %>%
ggplot(aes(x = Value, color = Part)) + geom_boxplot()