33.1 g5_largeL
fit of \[ {\cal M}_{3s}(E)=\frac{\Gamma}{E^2-M_r^2} \] with
\[ M_r= P[0]+iP[1]\\ \Gamma= P[2]+iP[3] \]
here we took \(k_{df}\) from the \(g=20\) fit
\[\begin{gather} \chi^2/d.o.f.=6.67124 \\ P[0]=2.99106\pm (0.43) \\ P[1]=0.000507939\pm (0.017) \\ P[2]=771.221\pm (9.1e+03) \\ P[3]=-46.3566\pm (6.1e+02) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.214& -0.995& 0.781\\ -0.214& 1& 0.259& -0.767\\ -0.995& 0.259& 1& -0.815\\ 0.781& -0.767& -0.815& 1\\ \end{pmatrix} \end{gather}\]}
33.1.1 g5_largeL closer to the pole
fiting only the points close to the pole
\[\begin{gather} \chi^2/d.o.f.=14.3023 \\ P[0]=-3.02518\pm (0.0014) \\ P[1]=-2.05679e-06\pm (3.2e-06) \\ P[2]=-90.2444\pm (68) \\ P[3]=3.91827\pm (3) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& 0.498& 0.828& -0.814\\ 0.498& 1& -0.00696& 0.0365\\ 0.828& -0.00696& 1& -1\\ -0.814& 0.0365& -1& 1\\ \end{pmatrix} \end{gather}\]}
33.1.2 g5_largeL plus const
fit of \[ {\cal M}_{3s}(E)=\frac{\Gamma}{E^2-M_r^2}+a_0 \] with
\[ M_r= P[0]+iP[1]\\ \Gamma= P[2]+iP[3]\\ c=P[4]+iP[5] \]
\[\begin{gather} \chi^2/d.o.f.=2.49786 \\ P[0]=3.02414\pm (8.5e+03) \\ P[1]=-3.8596e-05\pm (3e+03) \\ P[2]=-6.16673\pm (2.9e+08) \\ P[3]=-0.60452\pm (2.7e+07) \\ P[4]=4028.16\pm (6.1e+08) \\ P[5]=-232.015\pm (7.6e+06) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& 0.952& 0.543& 0.00869& 0.377& -0.998\\ 0.952& 1& 0.773& -0.297& 0.642& -0.934\\ 0.543& 0.773& 1& -0.835& 0.983& -0.496\\ 0.00869& -0.297& -0.835& 1& -0.923& -0.0639\\ 0.377& 0.642& 0.983& -0.923& 1& -0.326\\ -0.998& -0.934& -0.496& -0.0639& -0.326& 1\\ \end{pmatrix} \end{gather}\]}
33.1.3 g5_largeL Breit-Wigner
fit of \[ {\cal M}_{3s}(E)=\frac{R}{E-M_r+i\Gamma/2}+c \]
\[\begin{gather} \chi^2/d.o.f.=6.6866 \\ P[0]=307.678\pm (3.8e+02) \\ P[1]=1983.88\pm (90) \\ P[2]=195791\pm (1.1e+04) \\ P[3]=4209.13\pm (1.2e+03) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& 0.872& -0.938& -0.996\\ 0.872& 1& -0.809& -0.89\\ -0.938& -0.809& 1& 0.949\\ -0.996& -0.89& 0.949& 1\\ \end{pmatrix} \end{gather}\]}
33.1.4 g5_largeL F fit
fit of \[ F^{\infty}(E)=P[0]+P[1] \frac{E^2}{M_0^2} +i\left(P[2]+P[3] \frac{E^2}{M_0^2}\right) \]
\[\begin{gather} \chi^2/d.o.f.=57.4609 \\ P[0]=-4.37271e-06\pm (2.1e-08) \\ P[1]=1.66569e-06\pm (1.3e-11) \\ P[2]=3.67956e-06\pm (2.4e-09) \\ P[3]=-1.83672e-07\pm (2.5e-12) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -1& 1& 1\\ -1& 1& -1& -1\\ 1& -1& 1& 1\\ 1& -1& 1& 1\\ \end{pmatrix} \end{gather}\]}
pole position \(1/K +F=0\) in \(E/M_0\) \[ pole=3.0236 (0.000295158) +i -2.92805e-08 (4.25917e-08) \]