1 Note on sea corrections
Given the gluonic observable W(t)=t\frac{\partial (t^2\langle E\rangle)}{\partial t}=t^2\left( 2\langle E\rangle +t \frac{\partial\langle E\rangle}{\partial t}\right)
For the \delta \mu correction to a gluonic observable W, where the counterterm lagrangian {\cal L}_c= \delta \mu \bar u u + \delta \mu \bar d d with r_u=+1 and r_d=-1. Expanding the interaction e^{-{\cal L}_c} we have \begin{gather} \langle W \rangle = \langle W \rangle_{0}- \langle W \int dx' (\delta\mu\bar u u+\delta\mu \bar d d)(x') \rangle_{0} \\ = \langle W \rangle_{0} - \langle W \int dx (\delta\mu\bar \chi_u i\gamma_5 \chi_u- \delta\mu\bar \chi_d i\gamma_5 \chi_d)(x) \rangle_{0} \\ = \langle W \rangle_{0} +i\delta\mu \langle W \left(\text{Tr}[ \int dx S_u(x,x)\gamma_5 ] -\text{Tr}[ \int dx S_d(x,x)\gamma_5 ]\right)\rangle \end{gather} Where we got an extra minus sign from the fermion loop