<- data.frame(
df "en" = c("B64"),
"kappa" = c(0.139426500000),
"mul_sim" = c(0.00072),
"musig_sim" = c(0.1246864),
"mudel_sim" = c(0.1315052),
"ms_sim" = c(0),
"mc_sim" = c(0),
"Zp_Zs" = c(0.79018),
"mul" = c(0.0006669),
"musig" = c(0),
"mudel" = c(0),
"ms" = c(0.018267),
"mc" = c(0.23134)
)
6 ndg params
A matching between the ndg parameter and the OS can be defined as
\begin{cases} m_s = \mu_\sigma - \frac{Z_P}{Z_S}\mu_\delta \\ m_c = \mu_\sigma + \frac{Z_P}{Z_S}\mu_\delta \\ \end{cases} \quad\quad \begin{cases} \mu_\sigma =\frac{1}{2}( m_s + m_c) \quad\,\,\,\,\\ \mu_\sigma =\frac{1}{2}\frac{Z_S}{Z_P}( m_c - m_s) \\ \end{cases} \,. This matching scheme has the problem that \frac{Z_P}{Z_S} needs to be know very precise to estimate well the cancellation in the m_s.
An alternative scheme used in the gm2 strange and charm paper is \begin{cases} m_c = \mu_\sigma + \frac{Z_P}{Z_S}\mu_\delta \\ aM_K^{ndg}(\mu_\sigma,\mu_\delta) = aM_K^{OS}(m_s)= aM_K^{OS}(m_s^{ref}) +(m_s^{ref}-m_s)\frac{\partial M_K^{OS}}{\partial m_s}\Bigg|_{m_s} \\ \end{cases} where m_s^{ref} is some value close enough to m_s such higer order in the expansion are negligible. The derivative is splitted in sea and valence contribution \frac{\partial M_K^{OS}}{\partial m_s}=\frac{\partial^{val} M_K^{OS}}{\partial m_s} + \frac{\partial^{sea} M_K^{OS}}{\partial m_s} the derivative with respect to the valence is computed as finite difference and the derivative with respect to the sea is computed with the scalar insertions.
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(knitr)
# df$ms_sim<- df$musig_sim- df$
<- mutate(df,
df ms_sim = musig_sim - Zp_Zs * mudel_sim,
mc_sim = musig_sim + Zp_Zs * mudel_sim
)
<- mutate(df,
df musig = (ms + mc) / 2,
mudel = (mc - ms) / Zp_Zs / 2
)
kable(df[, c(1:7)])
en | kappa | mul_sim | musig_sim | mudel_sim | ms_sim | mc_sim |
---|---|---|---|---|---|---|
B64 | 0.1394265 | 0.00072 | 0.1246864 | 0.1315052 | 0.0207736 | 0.2285992 |
kable(df[, c(8:13)])
Zp_Zs | mul | musig | mudel | ms | mc |
---|---|---|---|---|---|
0.79018 | 0.0006669 | 0.1248035 | 0.1348256 | 0.018267 | 0.23134 |
now we cange only the charm keeping the strange at the simulation point
library(dplyr)
library(knitr)
<- mutate(df,
df1 musig = (ms_sim + mc) / 2,
mudel = (mc - ms_sim) / Zp_Zs / 2
)# musigma = 0.1260567
# mudelta = 0.1332397
# 2Kappamubar = 0.0351512889651
# 2KappaEpsBar = 0.0371542900641
# kappa = 0.1394265
#
# #epsbar = 0.1394265
# 2Kappamubar2 = 0.034769065158
# 2KappaEpsBar2 = 0.036670563765
# kappa2 = 0.1394265
kable(df1[, c(1, 2, 3, 4, 9, 10)], digits = 13)
en | kappa | mul_sim | musig_sim | mul | musig |
---|---|---|---|---|---|
B64 | 0.1394265 | 0.00072 | 0.1246864 | 0.0006669 | 0.1260568 |