<- data.frame(
df "en" = c("B64", "C80","D54"),
"kappa" = c(0.139426500000, 0.138752850000, 0.137972174000),
"mul_sim" = c(0.00072, 0.0006, 0.00054),
"musig_sim" = c(0.1315052, 0.107146000965, 0.087911000000),#0.077706999882
"mudel_sim" = c(0.1246864, 0.106585999855, 0.086224000000),#0.074646999976
"ms_sim" = c(0,0,0),
"mc_sim" = c(0,0,0),
"Zp_Zs" = c(0.79018, 0.82308, 0.85095),
"mul" = c(0.0006669, 0.0005864, 0.0004934),
"musig" = c(0,0,0),
"mudel" = c(0,0,0),
"ms" = c(0.018267, 0.016053, 0.013559),
"mc" = c(0.23134, 0.19849, 0.16474)
)
10 ndg params
A matching between the ndg parameter and the OS can be defined as
\begin{cases} m_s = \mu_\sigma - \frac{Z_P}{Z_S}\mu_\delta \\ m_c = \mu_\sigma + \frac{Z_P}{Z_S}\mu_\delta \\ \end{cases} \quad\quad \begin{cases} \mu_\sigma =\frac{1}{2}( m_s + m_c) \quad\,\,\,\,\\ \mu_\sigma =\frac{1}{2}\frac{Z_S}{Z_P}( m_c - m_s) \\ \end{cases} \,. This matching scheme has the problem that \frac{Z_P}{Z_S} needs to be know very precise to estimate well the cancellation in the m_s.
An alternative scheme used in the gm2 strange and charm paper is \begin{cases} m_c = \mu_\sigma + \frac{Z_P}{Z_S}\mu_\delta \\ aM_K^{ndg}(\mu_\sigma,\mu_\delta) = aM_K^{OS}(m_s)= aM_K^{OS}(m_s^{ref}) +(m_s^{ref}-m_s)\frac{\partial M_K^{OS}}{\partial m_s}\Bigg|_{m_s} \\ \end{cases} where m_s^{ref} is some value close enough to m_s such higer order in the expansion are negligible. The derivative is splitted in sea and valence contribution \frac{\partial M_K^{OS}}{\partial m_s}=\frac{\partial^{val} M_K^{OS}}{\partial m_s} + \frac{\partial^{sea} M_K^{OS}}{\partial m_s} the derivative with respect to the valence is computed as finite difference and the derivative with respect to the sea is computed with the scalar insertions.
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(knitr)
# df$ms_sim<- df$musig_sim- df$
<- mutate(df,
df ms_sim = musig_sim - Zp_Zs * mudel_sim,
mc_sim = musig_sim + Zp_Zs * mudel_sim
)
<- mutate(df,
df musig = (ms + mc) / 2,
mudel = (mc - ms) / Zp_Zs / 2
)print(df$mc_sim,digits = 12)
[1] 0.230029899552 0.194874805726 0.161283312800
kable(df[, c(1:7)], digits = 20)
en | kappa | mul_sim | musig_sim | mudel_sim | ms_sim | mc_sim |
---|---|---|---|---|---|---|
B64 | 0.1394265 | 0.00072 | 0.1315052 | 0.1246864 | 0.03298050 | 0.2300299 |
C80 | 0.1387529 | 0.00060 | 0.1071460 | 0.1065860 | 0.01941720 | 0.1948748 |
D54 | 0.1379722 | 0.00054 | 0.0879110 | 0.0862240 | 0.01453869 | 0.1612833 |
kable(df[, c(8:13)], digits = 20)
Zp_Zs | mul | musig | mudel | ms | mc |
---|---|---|---|---|---|
0.79018 | 0.0006669 | 0.1248035 | 0.13482561 | 0.018267 | 0.23134 |
0.82308 | 0.0005864 | 0.1072715 | 0.11082580 | 0.016053 | 0.19849 |
0.85095 | 0.0004934 | 0.0891495 | 0.08883072 | 0.013559 | 0.16474 |
now we cange only the charm keeping the strange at the simulation point
library(dplyr)
library(knitr)
<- mutate(df,
df1 musig = (ms_sim + mc) / 2,
mudel = (mc - ms_sim) / Zp_Zs / 2
)# musigma = 0.1260567
# mudelta = 0.1332397
# 2Kappamubar = 0.0351512889651
# 2KappaEpsBar = 0.0371542900641
# kappa = 0.1394265
#
# #epsbar = 0.1394265
# 2Kappamubar2 = 0.034769065158
# 2KappaEpsBar2 = 0.036670563765
# kappa2 = 0.1394265
kable(df1[, c(1, 2, 3, 4, 9, 10)], digits = 13)
en | kappa | mul_sim | musig_sim | mul | musig |
---|---|---|---|---|---|
B64 | 0.1394265 | 0.00072 | 0.1315052 | 0.0006669 | 0.13216025 |
C80 | 0.1387529 | 0.00060 | 0.1071460 | 0.0005864 | 0.10895360 |
D54 | 0.1379722 | 0.00054 | 0.0879110 | 0.0004934 | 0.08963934 |
library(dplyr)
library(knitr)
# keeping ms fixed and change mc form
# mc_sim =0.2285992
=0.22887328 # 0.1 of the iso-sim step
mc_targ <- mutate(df,
df1 musig = (ms_sim + mc_targ) / 2,
mudel = (mc_targ - ms_sim) / Zp_Zs / 2
)kable(df1[, c(1, 2, 3, 4, 10,11)], digits = 16)
en | kappa | mul_sim | musig_sim | musig | mudel |
---|---|---|---|---|---|
B64 | 0.1394265 | 0.00072 | 0.1315052 | 0.1309269 | 0.1239545 |
C80 | 0.1387529 | 0.00060 | 0.1071460 | 0.1241452 | 0.1272392 |
D54 | 0.1379722 | 0.00054 | 0.0879110 | 0.1217060 | 0.1259384 |
options(digits=16)
cat("2*kap*mub = ", df1$kappa*2*df1$musig,"\n")
2*kap*mub = 0.03650935611963307 0.03445101120121027 0.0335840782922007
cat("2*kap*epsb = ", df1$kappa*2*df1$mudel,"\n")
2*kap*epsb = 0.03456509229315717 0.03530960365515591 0.03475199451439068
cat("denominator\n")
denominator
cat("2*kap*mub = ", df1$kappa*2*df1$musig_sim,"\n")
2*kap*mub = 0.0366706195356 0.029733625999993 0.024258543577028
cat("2*kap*epsb = ", df1$kappa*2*df1$mudel_sim,"\n")
2*kap*epsb = 0.0347691766992 0.02957822249996168 0.023793025461952