C.1 Symbols and standard errors

  • The following table lists the statistics used to estimate unknown population parameters.

  • When the sampling distribution is approximately normally distributed, under appropriate statistical validity conditions, this is indicated by ✔.

  • The value of the mean of the sampling distribution (the sampling mean) is:

    • unknown, for confidence intervals.
    • assumed to be the value given in the null hypothesis, for hypothesis tests.
Sampling distribution
Parameter, and
Normal
Standard
Statistic sampling mean distn? error Ref.
Proportion \(\hat{p}\) \(p\) CI: \(\displaystyle \sqrt{\frac{ \hat{p} \times (1 - \hat{p})}{n}}\) Ch. 22
HT: \(\displaystyle \sqrt{\frac{ p \times (1 - p)}{n}}\) Ch. 26
Mean \(\bar{x}\) \(\mu\) \(\displaystyle \frac{s}{\sqrt{n}}\) Chs. 23, 27
Mean difference \(\bar{d}\) \(\mu_d\) \(\displaystyle \frac{s_d}{\sqrt{n}}\) Ch. 29
Difference between means \(\bar{x}_1 - \bar{x}_2\) \(\mu_1 - \mu_2\) \(\displaystyle \sqrt{\text{s.e.}(\bar{x}_1)^2 + \text{s.e.}(\bar{x}_2)^2}\) Ch. 30
Difference between proportions \(\hat{p}_1 - \hat{p}_2\) \(p_1 - p_2\) CI: \(\displaystyle \sqrt{\text{s.e.}(\hat{p}_1)^2 + \text{s.e.}(\hat{p}_2)^2}\) Ch. 31
HT: \(\displaystyle \sqrt{\text{s.e.}(\hat{p}_1)^2 + \text{s.e.}(\hat{p}_2)^2}\) using common proportion \(\hat{p}\) Ch. 31
Odds ratio (OR) Sample OR Pop. OR (Not given) Ch. 31
Correlation \(r\) \(\rho\) (Not given) Ch. 33
Regression: slope \(b_1\) \(\beta_1\) \(\text{s.e.}(b_1)\) (value from software) Ch. 33
Regression: intercept \(b_0\) \(\beta_0\) \(\text{s.e.}(b_0)\) (value from software) Ch. 33