8 Day 8 (June 18)

8.1 Announcements

  • Assignment 2 questions?

  • Holiday tomorrow and workday on Friday

  • Assignment 3 and Final project is posted

  • Recommended reading

    • Chapters 2 and 3 (pgs 13 - 46) in Linear Models with R
  • Selected questions from journals

    • “I’m having some trouble understanding the Nelder-Mead optimization method”
    • “We’ve talked a lot about how important the error term is in linear statistical models to account for randomness or variability in a specific dataset. So, in the “lm” function in R Studio, and in the example we discussed using the deer dataset, how can we include the error term inside this lm function?”
    • “When we split the data into training and testing sets, what ratio is generally used?”
    • “Is it correct to use adjusted R-squared when comparing multiple models to determine whether adding a variable improves the model, and to use R-squared when evaluating a single model to describe how well it fits? When doing basic linear regression, is it more common to use adjusted R-squared or AIC?”

8.2 Estimation

8.3 Maximum Likelihood Estimation

  • Maximum likelihood estimation for the linear model
    • Assume that \(\mathbf{y}\sim \text{N}(\mathbf{X}\boldsymbol{\beta},\sigma^2\mathbf{I})\)
    • Write out the likelihood function \[\mathcal{L}(\boldsymbol{\beta},\sigma^2)=\prod_{i=1}^n\frac{1}{\sqrt{2\pi\sigma^2}}\textit{e}^{-\frac{1}{2\sigma^2}(y_{i} - \mathbf{x}_{i}^{\prime}\boldsymbol{\beta})^2}.\]
    • Maximize the likelihood function
      1. First take the natural log of \(\mathcal{L}(\boldsymbol{\beta},\sigma^2)\), which gives \[\mathcal{l}(\boldsymbol{\beta},\sigma^2)=-\frac{n}{2}\text{ log}(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_{i} - \mathbf{x}_{i}^{\prime}\boldsymbol{\beta})^2.\]
      2. Recall that \(\sum_{i=1}^{n}(y_{i} - \mathbf{x}_{i}^{\prime}\boldsymbol{\beta})^2 = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\prime}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\)
      3. Maximize the log-likelihood function \[\underset{\boldsymbol{\beta}, \sigma^2}{\operatorname{argmax}} -\frac{n}{2}\text{ log}(2\pi\sigma^2) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\prime}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\]
    • Visual for data \(\mathbf{y}=(0.16,2.82,2.24)'\) and \(\mathbf{x}=(1,2,3)'\)
  • Three ways to do it in program R
    • Using matrix calculus and algebra
    # Data 
    y <- c(0.16,2.82,2.24)
    X <- matrix(c(1,1,1,1,2,3),nrow=3,ncol=2,byrow=FALSE)
    n <- length(y)
    
    # Maximum likelihood estimation using closed from estimators
    beta <- solve(t(X)%*%X)%*%t(X)%*%y 
    sigma2 <- (1/n)*t(y-X%*%beta)%*%(y-X%*%beta)
    
    beta
    ##       [,1]
    ## [1,] -0.34
    ## [2,]  1.04
    sigma2
    ##        [,1]
    ## [1,] 0.5832
    • Using modern (circa 1970’s) optimization techniques
    # Maximum likelihood estimation estimation using the Nelder-Mead algorithm
    y <- c(0.16,2.82,2.24)
    X <- matrix(c(1,1,1,1,2,3),nrow=3,ncol=2,byrow=FALSE)
    
    negloglik <- function(par){
    beta <- par[1:2]
    sigma2 <- par[3]
    -sum(dnorm(y,X%*%beta,sqrt(sigma2),log=TRUE))
    }
    optim(par=c(0,0,1),fn=negloglik,method = "Nelder-Mead")
    ## $par
    ## [1] -0.3397162  1.0398552  0.5831210
    ## 
    ## $value
    ## [1] 3.447978
    ## 
    ## $counts
    ## function gradient 
    ##      150       NA 
    ## 
    ## $convergence
    ## [1] 0
    ## 
    ## $message
    ## NULL
    • Using modern and user friendly statistical computing software
    # Maximum likelihood estimation using lm function
    # Note: estimate of sigma2 is not the MLE! 
    df <- data.frame(y = c(0.16,2.82,2.24),x = c(1,2,3))
    m1 <- lm(y~x,data=df)
    
    coef(m1)
    ## (Intercept)           x 
    ##       -0.34        1.04
    summary(m1)$sigma^2
    ## [1] 1.7496
    summary(m1)
    ## 
    ## Call:
    ## lm(formula = y ~ x, data = df)
    ## 
    ## Residuals:
    ##     1     2     3 
    ## -0.54  1.08 -0.54 
    ## 
    ## Coefficients:
    ##             Estimate Std. Error t value Pr(>|t|)
    ## (Intercept)  -0.3400     2.0205  -0.168    0.894
    ## x             1.0400     0.9353   1.112    0.466
    ## 
    ## Residual standard error: 1.323 on 1 degrees of freedom
    ## Multiple R-squared:  0.5529, Adjusted R-squared:  0.1057 
    ## F-statistic: 1.236 on 1 and 1 DF,  p-value: 0.4663